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1. Intr oduction

At the 16th IWWWEFB we presentedesultsfor the deformationof a VLFP with constantelastic
parametersThe short-vave theorywe presentednadeuseof anintegral-differential equation. The
theoryis extendedor finite waterdepthmakinguseof aspecialchoiceof the Greens function. In this
presentationve applytheray methodto theinhomogeneousase. Theconstanparametecasesenes
asa canonicalproblemto generatehe edgeor’initial’ conditions.Numericalresultsareshavn.

2. Mathematical formulation

Thefluid is incompressiblesowe introducethevelocity potentialV (x,t) = O®(x,t), whereV (x,t) is
the fluid velocity vector We assumevavesin still water Henced(x,t) is a solutionof the Laplace
equation

A® =0 inthefluid, 1)

togethemwith thelinearisedkinematiccondition,®, = w;, anddynamiccondition,p/p = —®; — gw,
atthelinearizedfree watersurfacez = 0, wherew(x, y,t) denoteghe free surfaceelevation,andp is
thedensityof thewater Thelinearisedfree surfaceconditionoutsidethe platformbecomes:

2
%Tj)-l-g%iz)zo atz=0and(x,y) € ¥, 2
The platformis assumedo be a thin layer at the free-surbce z = 0, which seemgo be a good
modelfor a shallav draft platform. The platformis modelledasan elasticplatewith zerothickness.
To describethe deflectionw(x,y) we applytheisotropicthin platetheory which leadsto anequation
for w of theform:
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wherem(x,y) is the massof unit areaof the platformwhile D(x,y) is its equivalentflexural rigidity.
We applytheoperator% to (3) andusethekinematicanddynamicconditionto arrive atthefollowing
equationfor ® atz= 0 andin theplatformarea(x,y) € ?:
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The free edgesof the platform are free of shearforcesandmoment. We assumehat the radius

of cunvature,in the horizontalplane,of the edgeis large. Hence,the edgemay be consideredo be
straightlocally. We thenapproximateghe boundaryconditionsat the edgeby:
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wherev is Poissors ratio, n is in the normaldirection,in the horizontalplane,alongthe edgeands
denoteghearc-lengthalongthe edge.At the bottomof thefluid region z= —h we have
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The harmonicwave canbewritten as®(x,t) = @(X) e 1%, Dueto thelarge lengthscalesandelastic
parameterinvolved we introducedimesionlesgoordinateandparameterin the following way:
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. The parametergi andD areof orderonefor large valuesof K. In a practicalsituation,whereL is
of the orderof 1000meteranda normalseaspectrumthis is the case.After droppingthe primeswe
obtainatz=0
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Theundisturbedncidentwave equals
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wherel, is thewave height,w the frequeng, while the wave numberobeys the dispersiorrelation,
kotanh(koh) = K, for finite waterdepth. We contimuewith the deepwatercaseh = «, henceK =
ko = w?L/g, andwe assumehatthe potentialunderneatlthe plate canbe written asa superposition
of ray-modesolutionsasfollows:
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where$,(x) is the phasefunction anda,,(x,K) the amplitudefunction of the " mode. In (9) each
modeis written asa regular seriesexpansionwith respecto inversepowersof iK,
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We now droptheindex n of themodefor awhile. Insertionof (9) into the Laplaceequation(1) gives
—K2a3S- O3S+ iK (2030 - O3S+ aAzS) + O(1) = 0. (11)

Thesubscript3 is usedto indicatethe three-dimensiondll andA operatorslf no subscriptareused
the operatorsaaretwo-dimensionain the horizontalplane.Next we insert(10) andcompareordersof
magnituden (11). This leadsto a setof equationgor Sandag to be satisfiedin thefluid region:

O(K?) : [3S-03S=0, (12)
O(KY) : 20300- O3S+ 0pA3S=0. (13)

We now insert(9) into the conditionatz= 0 (7). Thefirst two termsin the expansiorbecome
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If wewrite r =iS, andcombine(12) with (14 we obtainthedispersiorrelationatz= 0
(DY) —pxy) + r =1, (16)

combinedwith

Sz'x + % =r2 (17)
Thelastequatiorhasthesamegorm asthewell knovn eikonalequationin geometricabptics,however
in this casethe right-handsideis given by animplicit relation(16). In the caseof constantelastic
coeficientsr is a constantandthe ray arestraightlinesasmay be expected.We assumehatthereis
apropagatingvave solutionwith areal-valuedphasdunctionS. Thecharacteristicgrayy become:
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with 7 = (5Dr% — u+ 1) /r ando the parametenlongtheray.

To obtainanequationfor theamplitudea, atz= 0, we usethe equatiorin thefluid (13) to elim-
inatethe z-derivativesin (15). Thesecondrderderiative S,; is obtainedby meansof differentiation
with respecto z of (12). We finally getfor variableD andconstantu

da
d—co = —aoM{S}, (19)

wherethe operatoM{S} is definedas:
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In principlewe cansolve theseequationsf initial conditionsfor thewave-modesreavailable.We
have onetravelling wave-modeandtwo evanesceninodes.The problem,however, is thatwe cannot
derive a setof initial conditionsfor the amplitudes.Oneshouldthink of writing thefield outsidethe
platformasa superpositiorof anincidentanda reflectedwave. Sowe have four unknavn coeficient
to determinewhile thereareonly two conditionsattheedgeof the plate. Onemaytry toimposesome
matchingconditions,suchascontinuity of velocity andpotential. This kind of conditionshold in the
fluid domainandnotatthez= 0 only. The factthatthe zdependencof the potentialsdescribecare
differentunderneatlthe platformandoutsidethe platformmale it impossibleto succeedn matching
thetwo fields.

3. Initial conditions and results

We restrictourselesto the casethat the waves are perpendiculato the edgeof the platform. For
the caseof deepwaterit canbe shavn thatthreemodesat the plateare suficient to receve accurate
results.If thedepthbecomesmallermoremodescanbetakeninto account.



Two conditions,for the amplitudefunctions,at the edgeof the platformfollow directly from the
boundaryconditionsatthe edge(5), while thethird onebecomes
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Theseboundaryequationfollow from an analytic evaluationof the differential-intgral formulation
describeckarlier se€[1,2]. Firstwe shav acomparisorwith resultsof Takagietal [3] for afinite strip
with constantcoeficients,andthe effect of reflectionand multipe reflectionfor a similar case.The
resultsof Takagiareobtainedby a differentasymptoticmethod,no differencesanbe distinguished
in thefigure. In the next two figuresresultsfor a semi-infiniteplateareshavn. Therigidity is varied
over anfinite intenal by meansof a continuougqsine-)function.

an = (o (21)
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Question by : T. Miloh

| thought that the ray method is rather limited for very short waves and for this reason | was
impressed by the dmost perfect agreement with Takagi’s data that you presented which show
(surprisingly ?7?) that the ray method can be used for much longer wave lengths.

Author’sreply:

The ray method sometimes gives rather accurate results for shorter waves than expected. In
this case it is expected that the asymptotic results may be rather close to the exact values. In
my opinion this is due to the fact that the case we consider has a very smple wave gructure
(plan waves). The length scde involved is the length of the interva where the coefficients
change. The comparison with the results of Takagi does not concern the ray method results,
but the method to solve the canonicad problem to obtain the missing initid condition for the
ray solution. The method conssts of a superpostion of exponentid functions describing the
exact solution, so it is not so surprising that these results coincide so well. For the asymptotic
results for the inhomogeneous problem no data obtained by other methods are available.

Question by : K. Takag
Is your method applicable for a red VLFS, which has a jump of the rigidity, without any
difficulty ?

Author’sreply:

The asymptotic ray method is not gpplicable directly to this problem, due to the fact that
implictdy | used the length of the intervd where the coefficients change as length scae
However, the origind method used to compute the initid conditions (the canonica problem)
can be extended to solve this problem exactly. The two regions may be connected in severd
ways, if we make a rigid connection we may employ in the 2D case continuity of w(x) and
its first three cerivatives or for beam sees the Lamé constants may be varied or one may keep
the connected plates free of each other. The missng boundary conditions (three in this case)
in al these cases are obtained as before. There is no need to mach three eigenmode
expangons. The formulation of the integrd equation guarantees continuity of the velocity
potentid and its derivatives. | will propose to the organisers of next workshop an abstract
with, among others, results of this extension.



