A MODAL SYSTEM FOR CLASSIFICATION AND SIMULATION OF
NONLINEAR SLOSHING IN A NEAR-SQUARE BASE TANK WITH
FINITE DEPTH
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The adaptive third order analytical modal approach by Faltinsen & Timokha [3] is
modified to handle three-dimensional sloshing in a rectangular base basin. (New results
are presented and details will be given in a future full-scale article.) The assumptions
are incompressible fluid, irrotational flow, no overturning waves, no roof impacts and
right contact angle at the wall. In addition, the lateral and angular external forcing
is sufficiently small and characterised by the dimensionless parameter ¢ < 1. This
gives an infinite-dimensional system of ordinary differential equations accounting for
possible amplification of any natural modes. It couples nonlinearly time-dependent
(modal) functions f;; describing time-evolution of natural surface modes associated
with wave patterns (in dimensionless form)
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(r is the breadth/width ratio). The coordinate system is fixed relative to the tank with
the origin in middle of the mean free surface; z and y-axes are in the mean free surface
and parallel to tank walls.

The adaptive system is simplified for sloshing in a rectangular base basin with similar
breadth and width and finite fluid depth by assuming only two primary dominating
modes of O(el/ 3) caused by excitation frequency close to the lowest natural frequency of
linear sloshing. This ordering reduces the adaptive system to a finite-dimensional non-
linear system for the nine lowest modal functions. The nonlinear system is completed
by an infinite-dimensional linear system for the remaining modal functions. If cross-
waves are not excited, it coincides with the modal system by Faltinsen et al. (2000) [2]
derived for two-dimensional sloshing. The two-dimensional results by Faltinsen & Tim-
okha (2001) [2] can be used as an indicator of the limitation of our three-dimensional
model to capture longitudinally excited primary mode in terms of depth/breadth ratio
h and forcing amplitude. If the forcing amplitude is sufficiently small, h should be
larger than 0.24.

The simplified modal system is validated by new experimental data on resonant
sloshing in a square base tank due to horizontal forcing. The experiments consider
longitudinal (parallel to the walls) and diagonal forcing with the depth/breadth ratios
h = 0.508 and 0.34 and the forcing amplitude/breadth ratio 0.0078. Arai, Cheng &
Inoue (1993) [1] conducted also experiments for a square base tank with h = 0.5 and
established ‘swirling’ phenomena at the main resonance. Since transients did not die
out even after approximately 120 excitation periods (this highlights minor dissipation
effect), some additional efforts were made to identify the measured data in terms of
expected steady-state motions. The classification of experimental results was made by
both visual observations and post-experimental analysis of recorded wave elevations
near the tank walls. A Bubnov-Galerkin scheme combined with asymptotic technique
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is used to find analytically the steady-state waves correct to O(e) by means of a sec-
ular system of nonlinear algebraic equations coupling the dominant amplitudes of the
primary modes. The solution depends on three coefficients m;, which are functions of
h and excitation frequency. The coefficients are approximately constant for A > 1 and
vary very slowly for hy < h < 1 (here h; = 0.337... is the critical depth corresponding
to change from hard to soft spring response of two-dimensional sloshing).

The analytical scheme establishes three types of possible dominant steady-state wave
responses for longitudinal excitation, namely, ‘planar’ (two-dimensional), ‘swirling’ (ro-
tary motions) and so-called ‘squares’-like three-dimensional steady-state waves formed
by a combination of the two ‘squares’ (diagonal) wave patterns shown in figures 1 (a,b).
By adopting a stability analysis scheme that neglects perturbations in non-leading
modes, we were able to calculate effective frequency domains for the different wave be-
haviour and find critical depths where either the frequency domains of stable regimes
or their wave response may change dramatically. Summarised theoretical and exper-
imental results are presented in figure 2 (a,b) for longitudinal and diagonal forcing
respectively. Theoretical and experimental effective frequency domains of different
steady-state wave motions agreed well for both longitudinal and diagonal forcing. For
longitudinal excitation and h > h; they have the same qualitative structure as for
resonant sloshing in a circular basin, namely, the small neighbourhood of the pri-
mary resonance consists of two zones, where stable ‘swirling’ and irregular (no stable
steady-state solutions) motions are realised. Stable ‘planar’ sloshing occurs for exci-
tation frequencies slightly away from the main resonance. This zone falls into two
non-connected regions, i.e. for lower and larger excitation frequencies than the primary
one. Left region (for lower frequencies) contacts with the frequency domain of irregular
waves (‘chaos’), while the right region partly overlaps the effective domain for ‘swirling’.
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FIGURE 2. Theoretical ranges of stable steady-state motions for (a) longi-
tudinal and (b) diagonal excitations; depth/breadth ratio h versus excita-
tion/lowest natural frequency o /oy with fixed forcing amplitude/breadth ratio
H = 0.0078. Shaded area in (a) = ‘chaos’ (vanishes for h < 0.25). Experiments
(h = 0.508 and 0.34): ‘o’ — ‘planar’(a)/‘diagonal’(b) waves, '*' — ‘swirling’, '#'
— ‘chaos’, 'S' — ‘squares’-like and ‘?' — regular beating.
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FIGURE 3. Comparisons between experimental and theoretical results for
steady-state ‘swirling’ modes. Diagonal excitation H = 0.0078,h =
0.508,0 /01 = 1.008. (a) presents the parametric graph from the experiments.
(b) gives theoretical predictions in the framework of primary modes O(e'/3)
(CPRIMARY’) and by the modal system (up to O(e), 'MODAL’).

The effective domain for ‘squares’like modes is in general overlapped with left region
of ‘planar’ waves. Moreover, its steady-state amplitude is significantly larger than the
amplitude of the ‘planar’ waves. Therefore, experiments will most probably not capture
steady-state ‘squares’-like waves with static initial fluid state. The situation changes
with decreasing h. The frequency domain of stable ‘squares’-like waves then occupies
the small vicinity of the primary resonance instead of the regions of irregular waves,
while the ‘swirling’ frequency domain moves away from the primary resonant zone. The
frequency domain where three-dimensional phenomena occur, increases with increasing
forcing amplitude .

When the excitation is in the diagonal plane and h > h, stable steady-state solu-
tions exist for all excitation frequencies close to the main resonance and there is a zone
where ‘swirling’ and ‘diagonal’ modes of comparable amplitude co-exist. It is only the
‘diagonal’ and ‘swirling’ waves that can be stable. However, the theory establishes a
very narrow range of stable ‘squares’-like waves for lower depths (area GDE in fig-
ure 2 (b)) and there is even a zone of ‘chaos’ (no stable steady-state solutions) about
h = 0.286 (see curvilinear triangle ABC in figure 2 (b)). Since the importance of dis-
sipation increases with decreasing fluid depth (Faltinsen & Timokha [4]), it is possible
that this small frequency domain with ‘chaos’ will not be physically realised. There
were some problems in identifying which steady-state solution is realised for diagonal
forcing in the frequency domain where ‘swirling’ and ‘diagonal’ sloshing of similar am-
plitude co-exist (labelled ‘?" in figure 2 (b). Additional experimental and theoretical
studies on possible waves in this frequency domain are therefore needed. The experi-
ments should be done for longer time series and the possibility of stable non-harmonic
solutions should be theoretically investigated. Additional forthcoming analysis should
clarify the situation for arbitrary excitation direction and increasing amplitude. There
is probably a set of critical angles where the frequency domain with ‘chaos’ disappears,
while increasing amplitude may lead to larger domain for ‘chaotic’ motions.

Quantitative comparison of the theoretical and experimental wave elevations was also
presented. The validation of steady-state regimes used direct numerical simulations
with initial conditions calculated from asymptotic periodical solutions (up to o(e)). An
example of experimental and theoretical results are presented in figures 3 (a,b), where
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FIGURE 4. Photos from the experimental series demonstrating local phenom-
ena near the wall occurring for three-dimensional waves. Actual width of the
photos is approximately 1/3 of the tank length L;.

the positions of wave elevation probes 2 and 6 are also shown (numbers in [mm]).
Theory and experiment agreed very well for ‘planar’ and ‘diagonal’ motions, while
the calculated wave elevations near the wall for ‘swirling’” mode gave up to 30% lower
maximum wave elevation amplitude than in the experiments. However, the error was
significantly larger when using only dominating modes (up to 200%). This confirmed
implicitly that modification of the modal system should account for some higher modes
having the same order of magnitude as formally dominating ones. Another source of
improvements is connected with unsolved local phenomena documented by video for
‘swirling’ regimes. These local phenomena appeared as very steep waves with possible
run-up and overturning (see figure 4). Local phenomena may significantly increase the
measured values at the walls.

A forthcoming study should also focus on quantitative description of both transient
and steady-state solutions up to O(e) by direct numerical integration of our modal
system. This will require experimental data on initial free surface shapes and veloci-
ties. Preliminary calculations showed that actual three-dimensional sloshing depends
strongly on small changes in initial conditions. However, initial conditions give neg-
ligible changes in time evolution for frequency domains where ‘planar’ or ‘diagonal’
steady regimes are expected. Another future study will address resonant sloshing with
small deviations between breadth and width. Systematic studies for increasing forc-
ing amplitude and decreasing fluid depth including intermediate depth should be done
for a tank with similar lengths and breadth. The intermediate depth case requires
Boussinesq-type ordering and strongly multimodal structure in order to describe pro-
gressively activated modes. A further problem is to estimate dissipative effects during
sloshing, especially for intermediate and shallow depths when they have a dominating
character (Faltinsen & Timokha (2002) [4]).
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