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1. Introduction

In this paper we consider the reflection of oblique flexural-gravity waves propagating along an
ice-sheet by an arbitrary number of infinitely-long narrow parallel cracks of aribtrary spacing. The
ice-sheet floats on water of constant finite depth and is modelled as an elastic plate whose edges are
free to move. The motion of the plate and the fluid it rests upon is considered within the framework
of linearised theory.

The simplest problem in this category involves a single crack in the ice sheet and this problem has
recently been studied by the authors (Evans & Porter 2003). It was shown that the velocity potential
and hence the reflection and transmission coefficients are given explicitly. In particular, it was shown
that certain quantities relating to the jumps in displacement and gradient across the crack play a key
rOle in determining the solution. Two methods of solution were used giving the same explicit solutions
in terms of elementary infinite sums. One method utilises the appropriate Greens function and the
other is based on the use of non-orthogonal eigenfunctions in the depth variable. In infinite depth, a
similar approach has been used by Squire & Dixon (2000) and Williams & Squire (2002).

In this paper we extend the problem considered by Evans & Porter (2003) to one involving an
arbitrary number of narrow parallel cracks of arbitrary spacing and approach the problem using non-
orthogonal eigenfunctions. Thus we are able to demonstrate that the solution for N cracks may be
expressed simply and without approximation in terms of the solution of a 2N x 2N system of equations.
As in the single crack problem, it is the quantities AQ; and AP; for j = 1,..., N relating to jumps
in displacement and gradient across each of the cracks that play the key role in the solution process.

A related problem involves the scattering of waves by a semi-infinite periodic arrangement of
cracks. However one cannot naively take the limit as N — oo in the formulation described above since
(i) the radiation condition at infinity is inconsistent and (ii) any truncation to a large but finite value
of N (as would be needed by numerical computations for example) would lead to interference effects
in reflection and transmission coefficients due to the two end cracks. Instead the original formulation
can be modified by using information from a related problem involving an infinite periodic array of
cracks (the so-called Bloch problem). This leads to another infinite system of equations which does
not suffer problems with truncation since the condition at infinity has been incorporated explicitly
into the formulation.

2. Formulation for scattering by multiple cracks

Cartesian coordinates are chosen with y directed vertically upwards. Fluid is bounded below by a
flat rigid bottom on y = —h, —00 < z,2 < c0. An infinite elastic plate of small thickness, d, floats on
the surface of the fluid which has its mean position on y = 0. The plate is divided into N infinite strips
by narrow parallel straight-line cracks occupying z = a;, for —oco < z < oo, where a; < x < aj41,
j=1,...,N. See figure 1.

We seek a velocity potential ®(z,y, z,t) in the region —h < y < 0, —c0 < z,z < oo and write
O(z,y,2,t) = R{p(z,y)e?* ™'} where w is the radian frequency of motion and [ is an assumed
wavenumber in the z coordinate. It follows that the reduced velocity potential ¢(z,y) satisfies

(V2-1?)$p=0, —h<y<0, —oo<z< o0, (1)

¢y =0, ony=—h, —oo<z< o0, (2)
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Figure 1: A general configuration of cracks

and
[B(0ze —1)? + (1= 0)]py —kdp =0, ony=0, z#a; j=1,2,...,N. (3)

In (3), k = w?/g where g is gravity, 8 = D/(p,g) where D is the flexural rigidity of the sheet and p,,
is the density of water and § = (p;/pw)xd where p; is the density of ice.

The method of solution involves expanding ¢(z,y) in terms of eigenfunction expansions beneath
each separate sheet and matching across common boundaries. Thus we write

[e o]
o (@) = Y {AD e Helemars) 4 B0}y, (y) (4)
n=-—2
for a, < z < ap4q and for r = 1,2,...,N — 1. In the expansion above we have defined Y, (y) =

cosh v, (y + h) which are non-orthogonal eigenfunctions but which satisfy the relation

0
/_ ) You )y = Cu = B+ 7V OV, (5)

where Cy, = ${h + £ 1 (5871 + 1 — 8§)[Y,2(0) /yn]?}. Also, v, = (k2 + 12)% satisfy a dispersion relation
(BYE +1—6)y, tanhyh — 6 =0 (6)

governing possible values of k,. It can be shown that this has a pair of real roots +vy with corre-
sponding roots +ky which describe progressive waves, provided 9 > [. In addition there is a sequence
of pure imaginary roots +k, with n = 1,2,... and four complex roots +k_; and £k_o symmetric
about the real and imaginary axes. Let the roots in the first and second quadrants be k_; and k_s.

For 7 = 0 and r = N the representation in (4) is still valid provided we define ayp = 0 and ay4+1 =0
and provided the radiation condition is satisfied. Thus for an incident wave from x = —oo we have
BT(lO) = 6no, A%N) = 0, and the reflection and transmission coeflicients are given by

R;V _ A(()O)eikoal’ T]; — B(()N)efikoazv (7)
whilst for an incident wave from x = 400 we have B7(10) = 0, A,(zN) = dp0, and the reflection and

transmission coefficients are given by
R} = B(()N)e_ikoaN, Ty = Aéo)eikoal. (8)

At the free edges of the strips, we must impose conditions of zero bending moments and zero shear
stresses, which we express as

B =0, S¢") =0, asz—af and By 50, SV 50, asz—a  (9)
for r =1,2,..., N, where we have defined the operators B and S by

(Bu)(z) = [(Ogz — VZZ)uy]yzo and (Su)(z) = [(Opze — V1l28w)’uy]y:() (10)



and where 11 = 2 — v with v Poisson’s ratio.
Quantities of particular significance associated with the edges of each of the strips are
. _ . 1
AP, = lim [¢0) = ¢4, D)o, and  AQr = lim [ — 4§ V], (11)
representing, respectively, the jumps in slopes and elevation at the edges of each of the sheets.

After an algebraically complicated procedure of matching potentials and using various identities
resulting from the edge conditions we find that the unknown coefficients satisfy

Aszr)eiknbr . A%r—l) — ET(:) = ,B(kng;zAQr + ignAPr)/2knCn (12)
and .
B() — Br=Vgiknbr—1 — p(r) — (K, o' AQ, — ignAP,)/2k,Cy (13)

where b, = a,11 — a, and g, = (k2 + vI®)Y(0), ¢/, = (k2 +111?)Y;'(0). These are the key equations
that provide the platform for the scattering by finite arrays of cracks, semi-infinite periodic arrays and
the Bloch problem for infinite periodic arrays referred to in the Introduction.

For an incident wave from z = +oo we find, after applying the edge conditions, that

N
200700 = 53 (AQ; s +iaP; 5())
=1
. ]N
okoghet o = 537 (8@ 5P +inp; D)
j=1

where the unknowns AQ;, AP;, j =1,..., N are to be solved for. In (14) we have defined

(0) o GnIn ik dsy| 1) _ N~ 9nikuldy] (2) _ N~ k9w ikald,|
n n | Ajr — n n | Ajr — n n|Qjr
Sjr = tj—'l‘ Z C—ez J , Sj?" = Z Wez J , sz = Z —eZ J (15)
n=—2 n n=—2 "N n=—2 n
with?; =1if j > 1 and t; = -1 if j <0 and dj, = a; — a,. It then follows that for an incident wave
from z = —o0, for example,
N o N o
Ry=—Y Efeh% Ty =14+ FPe ot (16)
7j=1 7j=1

with similar expressions for R}, and Ty;. In the case of a single crack (N = 1) with a; = 0, it
is straightforward to show that the expressions for the reflection and transmission coefficients are
precisely those given in Evans & Porter (2003).

3. The Bloch problem for an infinite periodic array of cracks and scattering by a
semi-infinite periodic array

If the array of cracks is periodic with b, = b, then we may make a Floquet or Bloch assumption
that the potential satisfies

o V(z,y) = ppM(z,y), —co<r<oo (17)

where pu is a complex number which is to be regarded as the eigenvalue in this problem: if u lies on
the unit circle in the complex plane then the frequency w lies in a passing band and waves propagate
through the infinite array without decay; if |u| # 1 then w lies in a stopping band and waves cannot
pass through an infinite array.

The assumed form of the solution in (17) allows us to consider just one cell of width b containing a

crack and it immediately follows from (4) that ATV = 4A") and B{ ™Y = 4B{"). Using this in (12)
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Figure 2: Transmission coefficient, |T'|, against kod in the case of (a) two cracks with b/d = § and (b)
N =16 cracks with b/d = 2 (thin line) and for the corresponding semi-infinite array (thick line).

and (13) results, once the edge conditions have been applied, in the following relation to be satisfied
for the Bloch wave solution

3%1 — 8128921 = O (18)
where
NS Gnn, o = 9 o kg o
S11 = Z C, (Un +Un)7 S12 = ZQ knCh (vn _vn)a 8§21 = 22 C,, (vn _Un) (19)
n=-—2 n=— n=-—

with v = 1/(1 — pe*n?).

For any given frequency of wave, we can use (18) to find p for the infinite array of cracks of period
b. We now consider the case where a; = jb, 7 = 1,2,... corresponding to an ice sheet containing a
semi-infinite number of cracks and allow a wave to be incident from x = —oco. Then as £ — oo we
expect the solution to behave asymptotically according to (17) since far into the array of cracks the
waves start to ‘feel’ as though they are part of an infinite array.

Thus we find it useful to define the modified coefficients Ay = AT — 4 A" and B =
B,(f_l) — pB,(LT) with similar definitions for E@T, H’,, E,(,T) and Fv,(f) where the particular y for the
corresponding infinite array is in use. It follows that all new coefficients vanish as r — oo and we
can either start with (12), (13) or go straight to (14) to derive a new infinite system of equations for
the coefficients EC/)]- and A\]sj, 7 =2,3,... plus AQ; and AP;. In much the same way as already
described for the scattering by a finite number of cracks, the reflection coefficient for the semi-infinite
periodic array, R, can then be found in terms of a sum involving AQ;, AP;, AQ; and AP;.

4. Results

A selection of results will be presented at the workshop covering a broad range of different configu-
rations including scattering by single cracks, edge waves along cracks and non-uniqueness for multiple
cracks. Here we only present two sets of results. In figure 2(a) the transmission coefficient is plot-
ted against the incident wavenumber kod for a pair of cracks separated by b/d = % for realistic ice
parameters. Note the existence of zeros of transmission in this case and the spikey behaviour in the
transmission coefficient which is associated with the close spacing of the cracks. In figure 2(b) we have
plotted |T'| against kod again, but for an array of N = 16 cracks and compare those results with the
transmission coefficient for a semi-infinite array of cracks |Tz| = (1 — |[R|?)"/2.

5. References

Evans, D. V. & PORTER, R. 2003 Wave scattering by narrow cracks in ice sheets on water of
finite depth. To appear in J. Fluid Mech.

SQUIRE, V.A. & DixoN A.W., 2000, An analytic model for wave propagation across a crack in an
ice sheet. Int. J. Offshore & Polar Eng. , 10, 173-176.

WiLriams, T.D. & SQUIRE, V.A., 2002, Wave propagation across an oblique crack in an ice sheet.
Int. J. Offshore & Polar Eng. , 12(3), 157-162.



| 18th IWWFB Le Croisic (France) 6-9 April 2003 |

Question by : M. Mclver
Can you make the egenfunctions orthogond if you use a weght function different from

w(y)=17

Author’sreply:
| have not tried to do this as the method appears to work with w(y)=1.



