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1 Introduction

The flow field around a ship is extremely complex, even for tt
simplest case of motion through calm water with constant fc
ward speed. In particular, many vortical structures argi-ori
nated by the ship motion. Some of them are directly related
ship breaking wave®g. [3]. In other cases, vorticity is created
at the hull boundary and shed along and downstream the shij

Here, we present our investigations on some fluid dynang
processes connected with the motion of a blunt structume-pie
ing the air-water interface. We consider a two-dimensiqme}
totype problem consisting in a vertical flat plate, movinmfard
with known velocity €f. figure 1). This rather simple problem
is meant to be roughly representative of the fluid phenomena .
curring around the bow of a blunt ship and near a transom.steFiy. 2: Two-dimensional flow around a vertical plate moving from
left to right, Fr = U/(gh)'/? = 0.8, Re= Uh/v = 107, We=
U?hp/o = oo. Interface and vorticity contours obtained from the
numerical simulations are superimposed to the experimentaflow
visualization.
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2 One-fluid model of two-phase flows

A possible approach to deal with interfacial flows is to cdesi
the two phases as a continuous field where the generic fluid pro
erty, sayf, is defined by patching the corresponding fields in the
two phases, that is

d = xfair + (1 = X) fwater - 1

A rapid but smooth transition from one phase to another is-gua
anteed by the bridge functiop € [0, 1]. In this framework, the
evolution of the compound flow field is described by the Navier
Stokes equations for a single fluid and, in principle, therea
%&\\\\\\\\\\\\\\ 'W need to distinguish explicitly between the two phases. i@Gant
ity conditions of velocity and tangential stresses at therface
are automatically fulfilled, though in a "smoothed” senshile
surface-tension effects have to be modelled explicitheatly,
most of the numerical difficulties are shifted to the treattme
of the bridge function. In the following, we will use a Level-
The problem is studied numerically by a Navier-Stokes golvBet approach to define the transition from one phase to anothe
with a Level-Set technique to capture the air-water intsfa ~ Namely, the air-water interface is not explicitly followedt its

The problem has been studied from an experimental pointRgSition is captured as the zero level of a scalar field, define
view as well. Figure 2 shows a first comparison between numEtihe whole computational domain. A laminar flow is assumed.
ical and experimental results The experimental picturehin ! € field equations are discretized by a finite-differen¢esee,
background, is accompained by the interface location (the bWith sécond-order accuracy both in time and space. Theadpati
line) and the vorticity contours obtained numerically. Tloeyis discretization is based on an upwind ENO scheme. The time
characterized by many complex features: vortex sheddirg fr discretization is based on a predictor-corrector methath ity
the immersed plate tip, wave breaking on the upstream side &i2tions, and on a variable-density projection method.

(later on) breaking-induced air entrapment and wave bngaki
on the downstream side. Several plate velocities have ltedn s2 1 Background fluid-flow solver We assume that the

ied, with Froude number in the rangesél-2. Different regimes evolution of the one-fluid system is governed by the Navier-
of interaction between the vortical structures and therfate@ Stokes equations

have been analysed, [6].

Water

Fig. 1. Sketch of the considered problem and nomenclature
adopted.

In the following, we focus on the computational method and Veu = 0
details of the implementation are discussed through nwaleri Du 2
results. P = —Vp+2V - uD + 20kdsn + pg

Experimental measurements of the interface deformatibn, o
the pressure on the plate and of the velocity field are under dénere the density and the dynamic viscosity vary across
velopment and will be presented at the Workshop to compléeméine interface. The terokdsn is the capillary force, withr
the physical interpretation of the flow. the surface tensionp the normal to the interfaces half the



interface curvature andls the Dirac function equal to unity onwherep, is a pressure-correction term arising from the approxi-

the interface and zero elsewhere. Finally, mate projection method:
1 /0u;  Ou; - 172 Verti”?
(D)is = Dij = 2 (8:&- +3xj " :u"+At{[F(u)]Z?1/ _ﬁ}
is the rate of strain tensor. Within the one-fluid formulatithe (nomU)"+1/2
conditions at the interface between two viscous fluets, [7], ™ =a+ At {20 sl Ve }
are automatically captured. The explicit modelling of agg- Pr—1 k=1
tension effects is described later. ~ by solving the Poisson equations:
TIME DISCRETIZATION A second-order approximation in
time of Eq. (2) can be written as: 5 i1/ s
wrti_qyn vprt1/2 +1/2 v p?st)k/ = V- 20(56"7’):1—1/
-z Vel (CRAY L .
Vp V-u
D12 20 kS Ty +1/2 R = —
+[2V:n+1]/2 + 2 Kpi-ﬁ]m +g v <pz+;/2> At

and it is solved through a predictor-corrector scheme. ebiff
ently from most implementations, the corrector step isattnt
until convergence is reached to improve stability and aour
[2]. For brevity, we introduce the term

As before, once the above Poisson equations have been solved
velocity, density and viscosity fields can be updated. Agam
note that density and viscosity depend on the iteration Btep
because of the motion of the interface. The iterative proced
2V - uD is repeated until convergence is satisfied.
— tg SPATIAL DISCRETIZATION For the spatial discretization, we
have used staggered grid amd and y-derivatives have been
approximated by (different) Taylor expansions in both step  calculated using a second-order approximation and an Essen
Predictor step The density and the surface tension at the timgylly Non-Oscillatory (ENO) scheme [1]. The applicatiofi o
n + 1/2 are approximated with those at time— 1/2, and second-order ENO schemes, requires the choice of a salcalle
[F(u)]"'/? is obtained through a Taylor expansion from th#imiter function”. One of the most commonly used lim-

Flu)=—(u-V)u+

previous time steps. The pressure gradient is written as: iters is the "minmod” which is known to be dissipative. This
ni1/2 ni1/2 172 172 feature is usually accepted because it smooths the high nor-
Vo _ Vg Y + vp" mal gradient of the tangential velocity and further staleti
pr-1/2 T pn-1/2 pr1/2 pr1/2 7 the interface with a numerical viscosity. The so-called-"su

) i1 perbee” is the most suitable limiter to capture the advactio
and the two-step procedure to obtain the veloaify* reads:  of 4 steep function. However its indiscriminate applicatio
ne1/2 whole over the domain is not suitable with more smoothed
Vp . . . .
W} velocity profiles inside each one of the two phases. Though
L1 gt/ aiya) other limiters have been proposed, minmod and superbee have
uptt =@+t At { Y — R 2o } been selected because of their individual features andubeca
? i ? of the possibility of a smooth patching from one to another
@ allowing a more accurate advection of the velocity whole
For an incompressible fluid, the second equation in (4) bever the computational domain. In fact, we have introduced

@ —wrradrapt -

comes: a variable coefficients limiter functiom(a,b) in the form:
L n—1/2 _  n+1/2 n—1/2 .
M:v_ Vip — Po )_‘_20(”‘5”2 b — 0 if ab < 0
At n—1/2 n—1/2 m(a, b)
P P max(min(fal, b)), min(£[b], |a]))signa) it ab >0

Attime n + 1/2, the pressure is decomposedsas: p(s) + where the coefficienf is a function of the distancé from the
D(nst)- The first contribution results in the pressure jump at ﬂ?ﬁterface:

interface due to the surface-tension effects,
1 T H
2 nt1/2 n—1/2 f=9 2% (‘ﬁ_m) +1 19| < duim
Vp(ietyo = V- | 20(kdén) , (5) 1 if || > Orim
and it is completely independent of the density distributithe Sggfg%;iéhoef(;?texﬁ: Séngsﬂgge%f ltgtircoefnuents. The prac-

second ternp,;) is the pressure in the case without surface-
tension effects:

o (V(p”_”2 —p?,j;iffo)) _ V-4

(6)

pr—1/2 At

The solution of the Poisson equations (5) and (6) gpfEs'/?,
n+1/2 . . . . T H

Uo follows f.m”? the Second. equation in (4.)’ while the V'sFig. 3: Comparison of the interface location with (dashed line) ad

cosity and density fields are defl_ned once the interface hers b§/ith0ut using (solid line) the variable-coefficient limiter function.

captured by the Level-set technique discussed later. Td@Se for the test case considered in figure 2t(g/h)'/2 = 4-0.

are used to start the iterative corrector step.

Correctgﬁep At the k-th step of the corrector, thg term Figure 3 shows the effect of using different limiter funciso

[F(uw)], is obtained by a centered Taylor expansion, angy the case shown in figure 2. In particular, the minmod kmit
the pressure gradient is written as: solid line, produces a rather unphysical result with a "Raige

vprtl2 gyntl/? plunging jet. This is due to a numerical diffusion of the ai v

Pnsyk _ VP(ns)k—1 Vpe locity field inside the watexf. center plot, which is significantly

+1/2 +1/2 +1/2 i i i i
pz_l/ PZ_1/ pz_l/ reduced in the present formulation, dashed line and rigitt pl
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We note that this formulation is valid for high Reynolds
number. In fact, the tangential velocity would be physigall
smoothed by the higher fluid viscosity and the use of a superb
scheme would produce unphysical steepening of the taragen
velocities at the interface.

In the final implementation, the algebraic systems arisin
from the discretization of the Poisson equations are sobyed
a GMRES technique, which we found rather efficient and easi
portable on massive parallel computers.

2.2 Interface capturing The interface between the fluids is 3 -2 -1 0 1 2 3 4 X
traced using a level-set functiah as introduced in [5]. A nar-
row band around the interface is characterized by its sigied
tance from the air-liquid interface, figure 4. The level-&atc-
tion is used to define the bridge functign adopted to smooth
the flow variables across the interface. The explicit fuorai
form of the bridge function depends on the considered vijab D% =
as discussed in the following.

Fig. 5. Example of contour levels when the interface approaches
the lower tip of the plate.
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which has the drawback that it does not smooth the os-
cillations at the interface and results in a poorer stabilit

Therefore, in the final implementation, at the interface we
adopted a weighted combination of the two methods, that is

Phase 2

Fig. 4: Definition of a distance function in a narrow band around
the interf_ace zero level when the fonNa(d plunging jet hits tie un- oI = o7, — AT((sigN @) )|} ;| — (arsDij +amDJy)) . (9)
derlying interface (cf. the test case considered in figure 2).

In particular, upon considering the density a functiogpfve N our experienceg,, = 0-8 anda, = 0-2 is a suitable choice.
can write the continuity equation as: Figure 6 shows the time evolution of the percentage error in

mass conservation. For all the simulatiods= 11k and the
Op (0¢ domain length is60h. A 256 x 144 Cartesian grid is used.
% (m tu- V¢’) =0, Near the plate, the grid is uniform and the cell dimensiors ar
Az = Ay = 0-046h. For distances from the plate larger than
which gives the transport equation for the level-set fuwrcti 54 in the horizontal direction and larger thah in the vertical
as far asdp/0¢ # 0. The Lagrangian evolution of direction, the grid is stretched in both directions by anomen-
does not preserve distances. Therefore, a periodic ®dinittial function. During the initial evolution, the three réializa-

ization of ¢ is necessary to restore its geometrical mean-

ing. The reinitialization, as introduced in [5], is based on
O1F Am/m x 100
0.05 F
1) sigré) = 0. ™ o

-0.05 F

o9 V¢ Vo
57+(|vm -

where¢ evolves in the pseudo timeuntil stationary conditions .

are obtained. The standard solution procedure is based on ,{ nethod

ENO scheme for the calculation of the spatial derivatives. A  ,of " o o ooy

shown in [4], such schemes introduce an error at the interfac ,,f ~= = novariable coefficients

To alleviate the problem, [4], equation (7) can be solved by o35t | . \ ,

2 4 6 8tv/(g/h)

¢7; — AT (Sig“(tﬁ?,j)wi,j\ - D,-,]-) interface cell  Fig, 6 History of mass conservation for the test case considered i

P = figure 2
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Present method

tion schemes behave in a similar manner and differences star
8  to be visible with the formation of the forward plunging jes
confirmed by the top plot of figure #(g/h)!/? = 4.0. At
least up to the impact of the jet against the underlying fater,
269 ; t(g/h)'/* ~ 4-5, we observe a better conservation of the hy-
0% — 0 12 (@000 )2 brid scheme (9). For longer evolutions, mass conservatjon b
\/ ’+1’JA R ””lA it schemes (8) and (9) are roughly comparable but first compar-
m v isons with the experimental visualizations show the insire

This procedure has been found to be more accurate whgccuracy for the former, with weaker and delayed splash up
the interface is split into many branches, as the case pjé€ Standard approach [5] is less and less reliable, as dns
sented in figure 5, without the need of introducing diffefirmed by the disappearance of the air cavity entrapped by the
ent level functions. In spite of this, we still observed!unging jetand a smaller forward splash up.

the numerical smoothing of the interface for those cases

with high curvature of the interface.  For such case®,3 Smoothing across the interface The coefficients

a more accurate solution can be obtained by adoptirgf: the limiter function are not the only quantities that are

D; ; =
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Fig. 8 Solution for the test case considered in figure 2 by using
the trigonometric bridge function, solid line and center plot, and by
using (10), dashed line and right plot.t(g/h)!/2 = 3.0.

yif

tV(g/h) = 4.5

It can be shown that, for a correct solution of the conserwati
equations, the inverse of the viscosity has to be smoothedsc

yif tv(g/h) = 5.0 the interface, rather than the viscosity itself. Here, weshgsed:
ot if ¢ <—d,
. g
1 -1_, -1 sin| =+ -1 -1
HOES SR <(,“) - f) i 19l <0y
" I3
0 Ha_l if ¢ > 6u

yir t/(g/h)=5.5 We found that smoothind/p rather thanu becomes crucial

when an accurate resolution of the air-flow dynamics is n&ede
Finally, the Dirac function in the surface-tension is sniaat
as:

| 0
‘ ‘ ‘ ‘ (=9 1
1 2 3 X st

Fig. 7: Comparison of the interface location obtained by the stan-

if || < dst
(cos (%) — 1) if || < st

dard level-set algorithm [5], solid line, by the improved level-set [4],
dotted line, and by the present method, dashed line, for theest case
of figure 2. From top to bottom, formation of the forward plung -

In the present implementation, the amplitudes of the four
smoothing interval®;m, d,, 6, anddy: are fixed during the
computations and satisfy:

ing jet, impact with the interface and formation of an entrapped air
cavity. Otim >0, =8y > st .

The amplituded;;,» of the variable-coefficient limiter function
smoothed across the interface. In particular, the solutibn should be larger thad, to keep accurate the solution of the
the Poisson equation fgr,s) requires smoothing of the den-,4yection term in the transition region. Usualy; > 0-7Az

sity across the interface to avoid (possibly divergent) exm . - L . .
ical oscillations. Usually, the compound density is defindd sufficient to prevent oscillations in the solution of there-

by a trigonometric bridge function. Therefore, the compbur?pondi”g Poisson equations. Such oscillations would i&duc
1/p function, entering in the equations, is steeper on the aiaphysical parassite currents in both phases, thoughrlarge
side, shifting in air most of the transition from the water tair because of the density ratio. Thereforegjf > . the
tk:‘ethalr fletlgsd |nd0deEXpe“tincev this redlfJCtﬁs thel ?tab'|3Yadients ofp(s¢) decrease more rapidly, reducing the presence
of the method and reduces the accuracy of the solution. . S

the present implementation, we adopted the bridge furtctiortqunphysm"Jll currents in air side.
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