
Nonlinear irregular wave forces on near-shore structures

by a high-order Boussinesq method

H. B. Bingham∗ and P. A. Madsen

This abstract considers predicting the wave loads on fixed coastal structures of a size
that they can be assumed to lie in the diffraction regime, so that the structure’s influence
on the flow can be ignored. In particular, we are interested in near-shore structures such
as windmill foundations, which can be exposed to irregular, highly nonlinear waves in
intermediate to shallow depth water. The loads on such structures are typically estimated
by applying the vertical distribution of fluid velocity and acceleration under the wave to
Morison’s formula [1] or something similar. An accurate approximation of both the wave
elevation and the flow kinematics is clearly crucial to the success of this technique.

Wave flow kinematics can be determined from measurements, calculations, or a combina-
tion of the two. Measured wave elevation records are readily obtainable, but the associated
kinematics are rarely measured and must usually be computed. Many methods exist for
approximating the kinematics from a known wave elevation time series. The widely adopted
“Wheeler stretching” method [2] and subsequent variations, many of which are reviewed
by [3], attempt to correct the linear Airy theory result by introducing a local scaling which
maps the free surface to the still water level. The resulting expressions violate the bound-
ary value problem, but are widely used in practice. A number of rational approaches also
exist, which are based on satisfying the exact boundary value problem over some portion
of the time record. Sobey [4] discusses many of these methods, which differ mainly in the
assumption made for the (unknown) spatial variation of the elevation. Trulsen et al [5] have
also developed a rational method, but based on approximate equations.

Although stretching methods are widely used for predicting wave kinematics, they can
be expected to give significant errors when the waves are highly nonlinear. This is clear
by comparison with semi-analytic solutions for steady nonlinear waves. Figure 1 compares
the surface velocities, and the vertical distribution of velocity under an intermediate water
depth wave with kh = 1 and H/h = 0.55 which is about 90% of the stable limit. Here
H, L, k = 2π/L, and c = L/T are the wave height, length, wavenumber, and celerity
respectively, with T the wave period. It is clear that the stretched linear approximation
gives large errors for a wave of this nonlinearity. The picture is qualitatively the same
in deep and shallow water. The reference solution was computed using stream-function
theory [6] with N = 32 modes which gives O(10−12) as the ratio between the first and the
last Fourier coefficient and hence can be safely assumed to be spectrally converged. The
corresponding stretched linear approximation is obtained by taking the wave to be a linear
superposition of 1st-order Stokes waves. Thus,

η(x, t) =
N

∑

j=1

Aj cos (kjx − jω0t), (1)

where the primary frequency ω0 = 2π/T . The wavenumbers kj are obtained from ω0 via

the dispersion relation jω0 =
√

gkj tanh (kjh). This mimics what would be done in practice
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using a measured time series of the surface elevation. The corresponding velocity potential
is then

φ(z, t) =
N

∑

j=1

g

jω0

cosh [kj(z + h)]

cosh (kjh)
Aj sin (kjx − jω0t). (2)

All flow quantities can be obtained by taking derivatives of (2). In particular, the horizontal
and vertical components of velocity are u = φx and w = φz, while a further time derivative
gives the acceleration. The simplest stretching method is applied by making the coordinate
transformation (z + h) → h(z + h)/(η + h) in each linear expression.
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Figure 1: Surface velocities (top plots) and vertical distribution of (near) peak velocities
(bottom plots) under a nonlinear wave with kh = 1, and nonlinearity H/h = 0.57. Com-
parison between the exact value and stretched linear theory.

This example leads us to expect a similar situation for highly nonlinear irregular waves.
To look into it further, we apply a high-order Boussinesq method to irregular waves shoaling
up a two-dimensional beach, and compare the resultant vertical distribution of fluid velocity
with stretched linear theory. The Boussinesq method employed is described in [7] and [8],



where it is shown to produce highly accurate solutions on mildly sloping bathymetries for
for waves right up to the stable limit. The method has been extensively validated and
shown to be capable of propagating nonlinear waves accurately in relative water depths
of 0 ≤ kh <≈ 20. The kinematics (vertical distribution of velocity and acceleration)
are accurate up to kh ≈ 10. The ability to treat waves with very large kh is important
for predicting the evolution of irregular waves propagating into near-shore regions. This
is because a significant portion of the wave spectrum may be at large kh in deep water
and have important contributions to the result in shallow water. Figure 2 compares the
Boussinesq calculations for a JONSWAP spectrum wave with Tp = 9.2s, Hs = 4m generated
at x = 0 and allowed to shoal up the beach shown in the first plot. The second plot shows
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Figure 2: A JONSWAP spectrum wave Tp = 9.2s, Hs = 4m, shoaling up a beach computed
using a Boussinesq model. Beach profile and a snapshot of the surface elevation (top), time
series of surface velocities at h = 10m (x = 2.94km) compared to stretched linear theory
(bottom).

a snapshot of the surface elevation t = 5065s, while the bottom plots compare the surface
velocities at a depth of 10m (x = 2.94km) with the predictions of stretched linear theory.



Here the surface elevation computed by the Boussinesq model is taken as a measured signal
and processed as discussed above to obtain the stretched velocities. The local wave length
of the large wave at t = 5065s is around 75m corresponding to kh ≈ 1, and the local
nonlinearity is H/h ≈ .55 which is roughly the same conditions as that used in the steady
wave example discussed above; and we see the same trend here.

The discrepancies between stretched linear theory and the exact result are even larger
for the fluid acceleration (as will be discussed at the workshop), so it appears likely that
stretched linear theory when used in Morison’s equation will contain large errors when the
waves are highly nonlinear. The high-order Boussinesq method discussed here provides an
attractive alternative.

Acknowledgements

This work was supported by the Danish National Research Council (STVF grant no.
9801635). Their support is greatly appreciated.

References

[1] J.R. Morison, M.P. O’Brian, J.W. Johnson, S.A. Schaaf. The forces exerted by surface
waves on piles. Petroleum Transactions, AIME 189 149–157, 1950.

[2] J.D. Wheeler. Method for calculating forces produced by irregular waves. J. Petroleum

Technol. 249 359–367, 1970.

[3] O.T. Gudmestad. Measured and predicted deep water wave kinematics in regular and
irregular seas. Marine Structures 6 1–73, 1993.

[4] R.J. Sobey. A local Fourier approximations method for irregular wave kinematics.
Applied Ocean Research 14 93–105, 1992.

[5] K. Trulsen, O.T. Gudmestad, M.G. Velarde. The nonlinear Schrödinger method for
water wave kinematics on finite depth. Wave Motion 33 379–395, 2001.

[6] J.D. Fenton. The numerical solution of steady water wave problems. Comput. Geosci.

14:3 357–368, 1988.

[7] P.A. Madsen, H.B. Bingham, and H. Liu. A new Boussinesq method for fully nonlinear
waves from shallow to deep water. J. Fluid Mech. 462 1–30, 2002.

[8] P.A. Madsen, H.B. Bingham, H.A. Schffer. Boussinesq-type formulations for fully non-
linear and extremely dispersive water waves: Derivation and analysis. To appear Proc.

Roy. Soc. Lond. A 2003.



18th IWWFB Le Croisic (France) 6-9 April 2003 

 
Question by : B. Molin 
In deep water, Wheeler stretching is known to underpredict the kinematics in the crest. You 
seem to obtain the opposite. Is it due to the reduced waterdepth? 
 
Author’s reply: 
No. I found the same behaviour in deep water for waves near the limiting steepness. I’m not 
sure what the explanation is. 
 
----------------------------------------------------------------------------------------------------------------- 
 


