STERN WAVES IN A CHANNEL. THE
FORM OF THE WAVE MODES.

BY F.URSELL

DEPARTMENT OF MATHEMATICS,
MANCHESTER UNIVERSITY, M13 9PL, U.K.

1 The boundary value problem

For some time I have been working on the waves due to a submerged body moving
with constant velocity U along a channel. Here I shall be concerned with just
one aspect, the analytic form of the steady stern waves formed on the free surface
behind the body. We take cartesian coordinates moving with the body, z horizontal
across the channel, y vertical and increasing with depth, z horizontal along the
channel. The mean free surface is at y = 0 and the side walls are at x = %+ £. For
the sake of simplicity it is assumed that the motion is symmetrical about the mid-
plane = 0, but this restriction can be easily removed. It will then be expected
that the wave modes can be found by separation of variables and will be of of
the form X(z)Y (y)Z(z), and this is indeed the correct result. I had expected to
show this in the same way as for the Havelock wavemaker, but I encountered some
difficulties which may be of interest to other workers in this field and which I shall
describe here. The velocity potential is of the form

e=Uz+ ¢($7y’z)7

and it is assumed that the surface perturbation ¢ is so small that the free-surface
condition of constant pressure can be linearized. Then the equation of continuity
is
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Since ¢(z,y, z) is assumed to be an even function of z, we can write
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2 The boundary value problem for m > 0

We now assume that the submerged body lies in the negative half-strip (0 < y <
h, —o0 < z < 0). For the mth Fourier component we wish to find the form
of the potential ¢y, (y,z) satisfying the equation (1.5) in the semi-infinite strip
(0 <y < h, 0< 2z < o0), with the boundary conditions (1.6). Then by separation
of variables we find that ¢, (y, ) has modal solutions of the form

cosh Qpuj(h — y) exp(ikp;z). (2.1)

Here Qp,; and kp,; satisfy

gnj - Vga = U'Qmj tanh Qmjha (2-2)

and
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with a mode (2.1) corresponding to each solution Qp,; of the equation (2.2). Our
principal result will be the following:

The potential ¢,,(y,z) can be expressed as the sum of terms
(2.1).

( In the present section we shall henceforth omit the suffix m.) We might now try
to proceed as in the familiar Havelock wavemaker theory, where the free-surface
boundary condition is

(K + %) $m(y,z) =0 on y=0;

this theory depends on the completeness and orthogonality of the corresponding
functions {cosh gj(h — y)}. For our set {coshQ;(h — y) = f;j(y)} it can be shown
that the roots Q of the equation (2.2) are either real or pure imaginary, and that
there is a quasi-orthogonality property
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satisfied by the functions fi(y), f;j(y) , when Q2 # Q? We should note that the
quadratic form ‘ '
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associated with (2.3) is not positive definite. However, we have not been able to
show that the functions {f;(y)} are complete.

We therefore need to find a different argument to show that the potential ¢(y, 2)
can be expressed in terms of the modes (2.1) only. (Only a brief outline can be given
here.) An integral representation has been found for the potential G (y,z7,{) of
a submerged source
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Gy(z,y;€,m) = /: exp(ikz)%’g cosh Q(h — y)

where Q2 = k? +v2 and 5 < y. There are two real poles on the k-axis. If we
assume that there are waves at z = oo and no waves at z = —oo, the path
of integration must be chosen to pass below these poles. It can be shown that
G, can be expanded in terms of the modes (2.1).( This part of the argument is
omitted.) We can then show that the expansion of ¢(y, z) involves the same terms
(2.1), by using a form of Green’s representation involving sources and dipoles
along the boundary. Let Green’s identity be applied to ¢(y,2) and G_(y,z;7,()
in the semi-infinite strip (0 < y < h,0 < z < oo), where the function ¢ is regular
and the function G has a polar singularity Ko(vr) = —log(3vr) + O(1) near
(y,z) = (n,¢), and waves at z = —oc. We find that
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Using the surface boundary condition we find that the expression (2.6) is equal to
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The contribution from z = oo vanishes because the terms involving G- have no
waves at z = 0o. Thus the potential can be represented by a continuous distribution



of sources and dipoles over (0 < y < h,z = 0), together with a discrete source and.
a discrete dipole at (0,0). Here we use

Gy, zn,¢) = G-(n,; 9, 2)- | (2.7)

As we have noted. these sources and dipoles have expansions in terms of the modes
(2.1) '
cosh Q;(h — y) exp kjz = cos{|Q;|(h — y)} exp(—|k;|2) (2.8)

from the pure imaginary poles, together with wave terms from the real poles.

3 The case m=0

When we try to apply the same argument to the potential ¢o(y, z) we meet with
another difficulty. The source potential now becomes logarithmically infinite as
|z] = oo, whereas-for positive m it remains bounded at co. A different argument
has therefore been used. The equation (1.5) is now the two-dimensional Laplace
equation, and there is therefore a conjugate stream-function v (y, z) satisfying the
Laplace equation and the boundary conditions
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where cg and ¢, are constants. Clearly we can take c¢g = 0. If now we write
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then we observe that ¥ satisfies Laplace’s equation and the same boundary con-
ditions (3.2) as by, but with co = 0 and ¢, = 0. This is a standard Sturm-Liouville
problem, the eigenfunctions are the complete orthogonal set {sinhk;(h —y) =
Fj(y)}, where psinh k;h — kj cosh kjh = 0. It can then be shown that ¥o(y, z) can
be expanded as the sum of modes

sinh kj(h — y) exp(ik;z) ,

and it follows that the conjugate potential ®y(y,2) can be expanded as the sum
of modes
cosh k;(h — y) exp(ik;z) .

Analogous results can be found for infinite depth, involving integrals in place of
series.



