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ABSTRACT

Dual non-conservative evolution equations for a wind driven, breaking water wave
are rigorously derived using the variational approach: a modified Hamiltonian principle
involving the modulating wave Lagrangian plus a Work Function representing the non-
conservative effects of external boundary stresses due to wind and breaking. The dual
Euler equations represent conservation laws for <energy, momentum> or, correspondingly
<energy, celerity>.

It is further shown that these dual equations correspond to the complex NLS, as
modified by the non-conservative effects, thereby giving precise physical meaning to the
NLS and providing its extension to the long time evolution of non-conservative ocean-like
waves.

INTRODUCTION

Three quantities specify the state of a water wave in ( ~X, T ): the wave energy density, E( ~X, T );
the wave momentum density, Mi( ~X, T ); and the wave frequency functional, ω(k,E, . . .); from
these the wave phase speed, Ci( ~X, T ), can be found.

Energetic ocean waves are known to be created and to grow due to energy and momentum
pumping by the wind, (ėw; fi), balanced by momentum and energy losses due to breaking,
(Ṁbi

, Db), accomplished by small overturning jets at the wave crests; the waves are known
to be unstable to near neighbor sideband disturbances and to modulate, causing peaks in
wave amplitude where breaking takes place; the dominant frequency is known to downshift
steadily as the wave energy grows, and, correspondingly, the phase and group speeds increase.
Nonlinear processes dominate.

A proper mathematical description of the appropriate conservation laws, including the
external influences (wind pumping and wave breaking), explicating their influence on down-
shifting, has never been given. Here we give some new results of this nature, within the
variational (Hamiltonian) framework initiated by Luke and Whitham (1974).

NEW RESULTS (General)

An appropriate description can be given in terms of the Whitham time averaged Lagrangian,
L, representing conservative mechanical effects, and a work function, W , introduced here,
representing the non-conservative effects of external boundary stresses arising from the wind
pressure and from the isolation of the overturning jet from the main wave. By application



of the time-averaged Hamiltonian principle, eq. (9), the corresponding Euler equations are
found to be:

∂E

∂T
+

∂Fj

∂Xj
=

∂W

∂t
(1)

∂Mi

∂T
+

∂Sij

∂Xj
= −∂W

∂xi
(2)

and where it has been explicitly shown that:

∂W

∂t
( ~X, T ) = ėw −Db (3)

−∂W

∂xi
( ~X, T ) = fi − Ṁbi = Ṁi (4)

where the variables X,T refer to the modulation scale (so-called long), the variables xi, t to
the wave oscillation (short), and the overbar to short time averaging.

In (1) and (2) we have identified and introduced the four physical dependent variables
whose definitions follow from the Euler equations and are:

E(energy) = ωL,ω −L+ aTL,aT ; Fj(energy flux) = ωL,ki +aTL,aXi
(5)

Mi(momentum) = −kiL,ω −aXiL,aT ; Sij(wave stress) = −kiL,ki +Lδij − aXiL,aXi
(6)

where L = L̄, and the Lagrangian L is,

L =
η∫

−ho

pdy = −
η∫

−ho

{
Φt +

1
2
(∇Φ)2 + gy

}
dy (7)

where it can be shown that the Hamiltonian principle for this non-conservative real ocean
system is,

∫

R

∫
[δL + δW ] d~xdt = 0 (8)

and the time averaged principle introduced by Luke and Whitham (1974) as modified here
by the addition of the work function is:

∫

R

∫
[δL+ δW̄ ]d~xdt = 0 (9)

where R is over the fluid domain excluding breaking jets, and W is determined from and
satisfies the boundary conditions on the wave arising from external boundary stresses there,
including those due both to wind pressure and due to the pressures and fluxes acting at the
cut surfaces isolating the breaking jets from the main ocean wave.

From (5) and (6) it follows that,
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Ci = ω/ki =
E + L − aTL,aT

Mi + aXiL,aT

=
Fj − aTL,aXi

Sij − Lδij + aXiL,aXi

(10)

then utilizing (10) in (1) and (2), an evolution equation for Ci can be found, complementary
to (1) and (2).

∂Ci
∂T +

(
Sij

Mi

)
∂Ci
∂Xj

= 1
Mi

{[
Ci

∂W
∂xi

+ ∂W
∂t

]

+
[

∂
∂T (L − L,aT 〈aT + CiaXi〉) + ∂

∂Xj
(CiδijL − L,aXj

〈aT + CiaXi〉)
]} (11)

The double underlined terms are quasi-periodic and provide for fluctuations of Ci within
the wave group, and are essential for wave instability, modulation, and recurrence.

To the lowest relevant order in wave steepness, (ak), the contribution of wind pumping
to the single underlined term disappears so that only the effect of wave breaking there is
relevant; this can be parameterized in terms of the momentum loss and dissipation due to
wave breaking and shown to be positive, Tulin (1996). Again to the lowest relevant order
in (ak) the double underlined terms do not result in permanent downshifting, and therefore,
long term frequency downshifting is controlled by wave breaking; the essential role of four
wave energy transfer and the intercession of breaking in such transfer is discussed by Tulin
and Waseda (1999).

NEW RESULTS (Specific)

The Lagrangian L = L(ω, k, a, . . .) can be calculated from (7) by introducing a suitable
approximation for (η, Φ). We consider one horizontal dimension only, ~X = X, and take
approximations for (η, Φ) suggested by multiple scale analyses:

η = a cos θ − aT /ω · sin θ + 1/2ka2 cos 2θ + . . . (12)
Φ = w/k(a sin θ − yaX cos θ)eky + . . . (13)

Then L follows by substitution in (7), and L by subsequent integration over one cycle
(2π) in the phase, θ = kx− ωt. As calculated by J.J. Li:

L = 1/4ga2(ω2/gk − 1) − 1
8
gk2a4 1 + ω2/gk

2
− 1

4
g

ω2
(aT )2[2ω2/gk − 1] (14)

− 1
8

ω2

k3
(aX)2 − 1

8
ω2

k3
aaXX .

The evolution equations are then found to be, in terms of e and Cg, the group velocity:

∂e

∂T
+

∂(Cge)
∂X

= ėw −Db , E ≡ e =
1
2
ga2 (15)
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∂Cg

∂T
+ Cg

∂Cg

∂X
=

1
4
k

∂e

∂X
+

C2
g

8k2

∂

∂X

(
aXX

a

)
+

Cg

e
· γDb (16)

The underlined terms in (11) and (16) correspond; γDb = CṀb −Db = 0(1) > 0.
Intermediate results are the evolution equation for wave momentum,

∂(e/C)
∂T

+
∂(e/2)

∂X
= −∂W

∂x
= fx − Ṁb (17)

and the definition,

Cg = C/2[1− αX/2k] = C/2[1− (ak)2/4− aXX/8ak2] (18)

where α(X, T ), a fluctuating phase, is subsequently defined below.
The energy equation, (15), is correct through 0(ak)4, and the group velocity evolution,

(16), through 0(ak)3, where (ak) is the wave steepness, a measure of nonlinearity.
These evolution equations, (15) and (16), can be combined and constructed in the complex

form:

AT + CgAX + i
Cg

4k
AXX +

i

2
ωk2/A/2A = A

[
(ėw −Db)

g/A/2
− i4γ

∫
kDbdX

g/A/2

]
(19)

The LHS coincides with the nonlinear Schroedinger equation, except that this relation is
valid for all (X,T ), i.e. it is not restricted to a neighborhood (ko, Cgo); in (19), A = aei(θ+α)

where α(X̄, T ) is a fluctuating phase (θ = kx − ωt, as before). The RHS of (19) provides
the real effects, including the downshifting which arises from the term involving the integral
in X. For parameterization of ėw, Db in terms of /A/2 see Tulin, (1996), where a heuristic
version of (1), (2), and (11) is also given in the case of planar waves; in this description, ėw ∼
g/A2/,Db ∼ g/A/4, where the constants of proportionality follow from field observations.
The proper extension of the NLS to real waves and long fetches is therefore accomplished,
and its actual physical nature, in the form of the two conservation laws, (15) and (16), is
revealed.
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I have a comment and a question: 
The comment is related to the NLS-equation. Fully nonlinear simulations of large 
wave events exhibit more frequent occurance of the large waves, than simulations 
using the NLS-equation, see paper number 8 in this workshop (Clamond, D. & Grue, 
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Thank you for your question. One of the reasons we have carried out the development 
is to provide a basis for the derevation of evolution equations in 3-D and of higher 
order, but we have ourselves not done either. It is a good idea to do so, however.  
 
 
 


