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1 Introduction

While there are substantial interests in the motion of float-
ing bodies in waves, the transient, free response of float-
ing bodies in an otherwise still fluid has been a problem of
intrinsic interest. In potential-flow theory, the transient re-
sponse of a body with given initial displacement, say, heave
or roll, would be an oscillatory motion not necessarily at a
constant period. This is true even within the realm of linear
water-wave theory because the hydrodynamic force con-
tains memory effects. The issue is congruent to the fact the
the hydrodynamic force coefficients, such as added mass
and damping, are frequency dependent. Even so, it is a
common engineering practice to measure “damping” of a
particular floating system by transient decay tests. The ex-
pectation is that one would then hope to capture the damp-
ing value at the “natural frequency” of the body.

A time-domain solution of free-decay motion was first
obtained by Maskell & Ursell(1970) for a circular cylin-
der. Potential-flow solutions were obtained by Chapman
(1974), Adachi and Ohmatsu (1979), Yeung (1982), the lat-
ter for a body of an arbitrary shape. Newman (1985) stud-
ied the response of a vertical cylinder of finite draft using
an impulse response function. There are many recent works
that involve time domain simulations (Tanizawa, 1990, Van
Daalen 1993, Wu & Eatock-Taylor, 1996, Celebi & Beck,
1997). However efforts that take into account the presence
of viscosity are more limited. In the absence of bilge keels
or other sharp-edged geometry, roll motion decays slowly
since wave damping for typical shapes would be small.
Bilge keels and damping plate are often introduced to pro-
vide the necessary increase in damping to mitigate motion
response.

The solution of the transient response of a floating body
with keels is non-trivial since flow separation would be a
significant contributor to damping. There exist empirical
means of inclusion of such viscous effects (e.g., Himeno,
1981, Downie et al., 1990). Nonetheless, it would be highly
desirable to remove any empiricism by including the ef-
fects of viscosity at outset of the formulation. This has
been successfully pursued by Yeung and Liao (1999) by
using the FSRVM (Free-Surface Random-Vortex Method)
method. Experimental Validations have been reported for
the case of forced oscillatory motion and for wave-induced
motion. In this paper, we pursue this method further to
study the decay of free roll motion of cylinders with bilge
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Figure 1: Definitions and the Fluid Domain Bounded by∂D.

keels. The problem is formulated to allow full considera-
tion of the coupling effects of the three degrees of freedom
of the cylinder. The starting amplitude of roll can be large
as long as the bilge keels do not emerge out of the water.

2 Method of Solution

The Free-Surface Random-Vortex Method, as introduced
by Yeung and Vaidhyanathan (1994), is a Lagrangian-
Eulerian description of the fluid that can take into account
of fluid viscosity and free-surface motion. The theoretical
formulation allows for arbitrary body shapes. A very brief
exposition of the method is given below to explain how the
fluid-dynamic problem is coupled with rigid-body dynam-
ics.

Figure 1 shows a floating cylinder undergoing three de-
grees of freedom motion in free surface. The computa-
tional domain is designated byD, bounded by∂D. The
center of the moving bodyO is given by the coordinates
(xb(t), yb(t)) with respect toO, with the roll angleα(t)
measured positive counterclockwise.

FSRVM solves the velocity fieldu= (u, v) by decom-
posing it into irrotational and vortical components. The
rotational part is represented by vortex blobs, while the ir-
rotational part is described by a complex-valued boundary-
integral.

Thus if ξ is the vorticity normal to theOxy plane, andψ
the stream function, the governing equations are

Dtξ = ν∇2ξ, ∇2ψ = −ξ, (1)

whereDt is the material derivative andν the kinematic vis-
cosity coefficient.
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The vorticity equation is solved by successive fractional
steps of diffusion and convection. The diffusion step uses
a random-walk algorithm to diffuse the blobs, but the con-
vection step requires the consideration of the interaction of
the vortex blobs and the boundary,∂D. An O(N) algo-
rithm is used for the mutual interaction computations of the
blobs. The diffusion process is assumed to be sufficiently
local so that effects of the free surface are negligible.

To obtain the stream functionψ at timet, we observe

∇2ψv = −ξ, ∇2ψh = 0. (2)

whereψv is known if the position and strength of each vor-
tex blob is known andψh is a solution of a boundary-value
problem inD. Sinceψh satisfies Laplace’s equation, we
can introduce a complex potentialβh(z, t)= φh+iψh, where
φh is the conjugate function (velocity potential) associated
with ψh andz = x+ iy.

At any given timet, it follows from Cauchy’s integral
theorem that eitherφh or ψh can be solved on the fluid
boundary when its conjugate part is specified on that part
of boundary:

πiβh(z)−
∫
∂D

− βh(ζ)
ζ − z

dζ = 0 for z ∈ ∂D. (3)

Specifically, on the body boundary, the no-leak condition
can be shown to yield:

ψh = −ψv + ẋbȳ − ẏbx̄−
1
2
α̇R2

o on∂Db. (4)

where ẋb, ẏb, and α̇ are the rigid-body velocities of the
body andR2

o = x̄2 + ȳ2 for a body point with coordinates
x̄, ȳ. If z is on the free surface∂DF , the kinematic bound-
ary condition for the complex velocityw = u− iv is used to
advance the location of the free surface, while the dynamic
condition can be used to advanceφh:

Dtz = w∗(z, t)− νd(z− zo), (5)

Dtφh = −Dtφv +
1
2

ww∗ − gy − νdφ, (6)

Here∗ indicates complex conjugate. The damping function
νd in Eqns. (5) and (6) is zero except in the damping layers
−L < x ≤ xl andL > x ≥ xr on the left and right ends
of the free surface, andzo is the initial location of the lead
free-surface node of the layers att = 0.

After βh is solved, the “no-slip” boundary condition on
∂Db is satisfied by generating vorticity of an opposite sign
to nullify the tangential surface velocity fromβ.

To obtain the forces and moment on the body, we need
to solve for∂βh/∂t, since∂φh/∂t is needed in Euler’s in-
tegral to evaluate the surface pressure.

p

ρ
= −∂(φh + φv)

∂t
− 1

2
|∇φ|2 − gy, (7)

Thus, an integral equation similar to Eqn. (3) has to be
set up in parallel for∂βh/∂t. The boundary conditions of
∂φh/∂t on∂DF are given by Eqn. (6). On∂Db,

∂ψh
∂t

= ẍbȳ − ÿbx̄−
1
2
α̈R2

o − {
∂ψv
∂t

+

ẋbv − ẏbu+ α̇[(ẋb − u)x̄+ (ẏb − v)ȳ]}. (8)

Once the quantityφt is known, it follows from (7) that
the hydrodynamic forceF1,2 and momentF3 are given by

Fi =
∫
∂Db

pnids, i = 1, 2, 3, (9)

wheren1 = nx, n2 = ny, n3 = [nx(y − yb) − ny(x −
xb)]. Shear stresses on the body surface is neglected

Note that in the absence ofψv, the flow is entirely irro-
tational. Thus, a fully nonlinear inviscid solution can be
recovered using FSRVM by shutting off the vorticity gen-
eration process.

The free-motion problem introduces the complexity that
the body acceleration terms in Eqn. (8) are unknown and
are coupled to the pressure integration of Eqn. (9) via New-
ton’s Second Law:

M(ẍb − ȳgα̈− x̄gα̇2) = F1 (10)

M(ÿb + x̄gα̈− ȳgα̇2) = F2 +Mg, (11)

Iōα̈+M(x̄g ÿb − ȳgẍb) = F3 −Mgx̄g, (12)

whereM is the body mass, and(x̄g, ȳg) the location of
the center of gravity. Eqns. (10) - (12), need to be solved
in conjunction with the fluid- dynamic problem described
above.

In view of Eqn. (8), four new analytic functions can be
constructed to represent the complex potential∂βh/∂t:

(
∂φh
∂t

+ i
∂ψh
∂t

) = β1tẍb + β2tÿb + β3tα̈+ β4t. (13)

Equation (13) indicates thatβ1t, β2t, andβ3t are each asso-
ciated with effects due to unit body acceleration, andβ4t

is related to known behavior of the velocity field. It is
not difficult to obtain the integral equations for these four
βts. None of these boundary-value problems depends on
the unknown accelerations(ẍb, ÿb, α̈). Thus, similar to
(3), four integral equations can be set up for each of the
βit, i = 1, .., 4.

When the resultantφit terms are introduced back to the
right-hand side of (10)-(12), we can separate the unknown
accelerations from quantities that can be calculated. It fol-
lows then a set of coefficientsAij andW4i can be defined:

Aij(t) = ρ

∫
∂Db

∂φj
∂t

nids, i, j = 1, 2, 3; (14)

W4i(t) = −ρ
∫
∂Db

(
∂φ4

∂t
+
∂φv
∂t

+
1
2
|∇φ|2 + gy)nids.(15)

With the use of these coefficients, Eqns. (10–12) can be
reduced to give (M +A11)

A21

(A31 −Mȳg)

A12

(M +A22)
(A32 +Mx̄g)

(A13 −Mȳg)
(A23 +Mx̄g)

(Io +A33)

 ẍb
ÿb
α̈


=

W41 +Mx̄gα̇
2

W42 +Mȳgα̇
2 −Mg

W43 −Mgx̄g

 . (16)

Equation (16) describes completely the full dynamic cou-
pling between the fluid and body and all modes of motion.
It yields(ẍb, ÿb, α̈) at any givent without relying on any fi-
nite differencing scheme in time. The treatment is therefore
fully implicit and stable.

2



Figure 2: Body Profiles for a Rectangular Section and
a Tumblehome Section

Roll Decay from an initial roll angle of 10 deg: (t)/ o
(Tumblehome body:  Radius of gyration abt G, 9.243cm; Vcg= -6.0cm)
Rectangular body, Radiusof gyration abt G: 10.06cm, Vcg=-3.30 cm)

-1.00

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

t / T

         α(t)/αο

Rectangle (sparse)

Tumblehome Profile

Rectangle (dense)

Figure 3: Time History of Roll for Rectangular and Tumblehome Bodies

3 Results and Discussion

Figure 2 shows two body sections to which the method of
solution in Section 2 is applied. One is a rectangular body,
the other a tumblehome-shaped body with a flat bottom.
Both have beams of 30.5cm. These are overlaid to indi-
cate their relative dimensions. The bilge keel depth to half
beam ratio,KD, is 0.079. The reference periodT for roll is
1.958 seconds. Figure 3 shows the slow roll decay of both
cylinders from an initial angle of10o in an inviscid fluid. It
seems puzzling that the tumblehome-body motion decays
faster than the rectangular shape, since it is more rounded
and its keels are at about the same location. The explana-
tion for this is related to the frequency dependency of the
damping. Figure 4 shows the linear, wave dampingλ33 of
the two sections versus̃ω ≡ ω

√
B/2g. It is clear that based

on the “crude” oscillation frequency of the two bodies, rect-
angular section,̃ω = 0.64, tumblehome section,̃ω = 0.49,
the latter has a much higher amount of damping. Note that
the period of oscillation is not constant, increasing some-
what slowly in time.

In an inviscid fluid, a circular cylinder would oscillate in-
definitely in roll in the absence of any bilge keels. Figure 5
shows the decay of motion due to the generation of surface
waves by a pair of10%-keels (KD = 0.1), which are posi-
tioned at the±45o position of the circular cylinder. The roll
angle is+40o at t = 0 with no heave and sway displace-
ment. The cylinder, with a beam of 30.5 cm, was in static
equilibrium with ȳg/B = −0.197. In an inviscid fluid, the
decay is slow. The nonlinear coupling of the motion modes
gives rise to heave motion occurring roughly at the “natu-
ral heave frequency”. Sway and roll coupling leads to an
oscillatory sway response that approach a constant. The
large-time static drift is about 10% of the radius.

Figure 6 shows the corresponding response for a viscous
fluid (ν = 1.14 × 10−2cm2/sec). The bilge keels gen-
erates so much damping that the roll maxima are almost
halved in successive periods initially. A larger sway drift
is observed. The roll and sway responses with and without
viscosity during the initial few periods are compared more
vividly in Figure 7.

A rectangular cylinder with bilge radius being 2.1% of
its beam was ballasted with āyG = −4.53cm (B =
23.54cm). The sharp corners produce significant viscous

damping besides wave damping. Figure 8 shows the con-
figuration of the cylinder in equilibrium in laboratory con-
dition . It is allowed to roll about the waterline. The com-
parison between the experimental measurements and the
predictions of FSRVM is shown in Figure 9. The agree-
ment with the viscous-fluid model is excellent for the first
four periods. For large time, and small angle of roll, the
assumption of a frictionless rotary bearing is not quite ap-
plicable.

4 Conclusions
A theoretical study of the roll decay of cylinders is pre-
sented. The study examines the viscous effects on the de-
cay, which are substantial for bodies with bilge keels. In
the 3DOF coupled system, the body is seen to drift slightly
in a direction of the higher initial position of the two keels
for the cases investigated. The decay rate is well substanti-
ated by an experiment for a rectangular cylinder conducted
at University of California, lending much credence to the
method of solution.
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Figure 4: Linear Roll Damping for Rectangular and Tumblehome
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Figure 6: Roll, Sway and Heave response of a Circular Cylinder,
KD = 0.1, αo = 40o, with Viscosity.
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Figure 8: Laboratory Experiment of a Cylinder for Roll Decay
Test.
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Figure 22:  Non-Dimensional Transient Roll Response
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Figure 9: Transient Roll Decay of a Rectangular Cylinder with-
out Bilge Keels, Experiments and Theory.
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