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1 Introduction y

While there are substantial interests in the motion of float-
ing bodies in waves, the transient, free response of float-
ing bodies in an otherwise still fluid has been a problem of

intrinsic interest. In potential-flow theory, the transient re- 4 Can, '
sponse of a body with given initial displacement, say, heave ' o, D& =vy%e
or roll, would be an oscillatory motion not necessarily ata | Dt !
constant period. This is true even within the realm of linear Jy=-¢
water-wave theory because the hydrodynamic force con- '
tains memory effects. The issue is congruent to the fact the e . -

the hydrodynamic force coefficients, such as added mass
and damping, are frequency dependent. Even so, it is &igure 1: Definitions and the Fluid Domain Boundedd.

common engir_leering practice to measure “damping” Ofl?eels. The problem is formulated to allow full considera-

parﬂcglar floatmg system by transient decay tests. The &on of the coupling effects of the three degrees of freedom

pectanon IS that“one would then h?pe to capture the damcﬁ}’the cylinder. The starting amplitude of roll can be large

N9 vglue at the_ naturgl frequency” of the bo‘?'y- ~as long as the bilge keels do not emerge out of the water.
A time-domain solution of free-decay motion was first

obtained by Maskell & Ursell(1970) for a circular cylin- .

der. Potential-flow solutions were obtained by Chapma% Method of Solution

(1974), Adachi and Ohmatsu (1979), Yeung (1982), the Ia(Ihe Free-Surface Random-Vortex Method, as introduced

ter for a body of an arbitrary shape. Newman (1985) stu Yy Yeung and Vaidhyanathan (1994), is a Lagrangian-

|ed.the rlesponse of afvert!cal c;ﬂmder of finite draft usm%lélerian description of the fluid that can take into account
;naltr?n?/lf)i/(eert?riréogtnsrialij:gilrzﬁl;io?]rse (e'}faenlr]zg\?v);ricg)egrg V{//C;I’ fluid viscosity and free-surface motion. The theoretical

v ' rmulation allows for arbitrary body shapes. A very brief
Daalen 1993, Wu & Eatock-Taylor, 1996, Celebi & Becktexposition of the method is given below to explain how the

1997). However efforts that take into account the presenge. .- : : AR i
of viscosity are more limited. In the absence of bilge keecUId dynamic problem is coupled with rigid-body dynam

or other sharp-edged geometry, roll motion decays slowly

since wave dampina for tvpical shanes would be small Figure 1 shows a floating cylinder undergoing three de-
bing yp P rees of freedom motion in free surface. The computa-

Bilge keels and damping plate are often introduced to prﬁbnal domain is designated by, bounded bydD. The

vide the necessary increase in damping to mitigate mo“%%nter of the moving bodg is given by the coordinates

response. , _ (2b(t), y(t)) with respect toO, with the roll anglea(t)
The solution of the transient response of a floating bodyeasured positive counterclockwise.

with keels is non-trivial since flow separation would be a FsryM solves the velocity fielti= (u,v) by decom-
significant contributor to damping. There exist empiricghosing it into irrotational and vortical components. The

means of inclusion of such viscous effects (e.g., Himengytational part is represented by vortex blobs, while the ir-
1981, Downie etal., 1990). Nonetheless, it would be highlgational part is described by a complex-valued boundary-
desirable to remove any empiricism by including the efrntegral.

fects of viscosity at outset of the formulation. This has 1,5 if¢ is the vorticity normal to th€zy plane, andp

been successfully pursued by Yeung and Liao (1999) e stream function, the govering equations are
using the FSRVM (Free-Surface Random-Vortex Method)

method. Experimental Validations have been reported for D& =vV3%, V3 = —¢, (1)
the case of forced oscillatory motion and for wave-induced

motion. In this paper, we pursue this method further tathereD; is the material derivative andthe kinematic vis-
study the decay of free roll motion of cylinders with bilgecosity coefficient.
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The vorticity equation is solved by successive fractional Once the quantity; is known, it follows from (7) that
steps of diffusion and convection. The diffusion step usébe hydrodynamic forcé’; » and momen#s are given by
a random-walk algorithm to diffuse the blobs, but the con-
vection step requires the consideration of the interaction of F; = / pnids, i=1,2,3, )
the vortex blobs and the bounda®yD. An O(N) algo- 9Dy
rithm is used for the mutual interaction computations of theheren; = n,, ny = ny, n3 = [nz(y — y) — ny(x —
blobs. The diffusion process is assumed to be sufficiently)]. Shear stresses on the body surface is neglected
local so that effects of the free surface are negligible. Note that in the absence gf,, the flow is entirely irro-

To obtain the stream functian at timet, we observe tational. Thus, a fully nonlinear inviscid solution can be

9 9 recovered using FSRVM by shutting off the vorticity gen-
Vo, = =, V7 =0. () eration process.

wheret), is known if the position and strength of each vor- The free-motion problem introduces the complexity that
tex blob is known andb, is a solution of a boundary-value the body acceleration terms in Eqn. (8) are unknown and
problem inD. Sincev, satisfies Laplace’s equation, weare coupled to the pressure integration of Eqn. (9) via New-
can introduce a complex potentia| (z, t)= ¢y, +iy,, where  ton's Second Law:

on ri]s the cc()jnjugate function (velocity potential) associated M (i, — gt — Z, &%) = Iy (10)
with ¢, andz = = + iy. . . _ .9

At any given timet, it follows from Cauchy’s integral M{go + 2 = §o07) = Fo + My, (11)
theorem that eithes;, or 1, can be solved on the fluid Ioé + M (20, — Yg@p) = F3 — Mg, (12)
boundary when its conjugate part is specified on that paghere M is the body mass, an,, 7,) the location of
of boundary: the center of gravity. Egns. (10) - (12), need to be solved

_ Br(¢) in conjunction with the fluid- dynamic problem described
’/Tlﬁh(z) — —d( =0 forz € 0D. (3) above.

- o§ ~ 2 ~Inview of Egn. (8), four new analytic functions can be
Specifically, on the body boundary, the no-leak conditioBonstructed to represent the complex poterétial /ot
can be shown to yield: 96 9
h . h

(W +iTg, ) = Bty + Botlip + Baed + Bar. (13)

Equation (13) indicates tha,, 5-;, andSs, are each asso-
where;,, ¢, and & are the rigid-body velocities of the ciated with effects due to unit body acceleration, a@hd
body andR? = z2 + g for a body point with coordinates is related to known behavior of the velocity field. It is
z,y. If zis on the free surfac@Dr, the kinematic bound- not difficult to obtain the integral equations for these four
ary condition for the complex velocity = u—ivisusedto f;s. None of these boundary-value problems depends on
advance the location of the free surface, while the dynamtiee unknown accelerationgy, ij», ). Thus, similar to

P - 1 .
Yy = =y + TpY — Ypl — 50&R§ on oDy, (4)

condition can be used to advangg (3), four integral equations can be set up for each of the
. Bi,i=1,.., 4.
Diz=w"(2,t) — va(z — 2,), ®) When the resultan;, terms are introduced back to the
Dyop = —Dypy + EWW* — gy — vadb, (6) right-hand side of (10)-(12), we can separate the unknown
2 accelerations from quantities that can be calculated. It fol-
Here* indicates complex conjugate. The damping functiolows then a set of coefficients;; andW,; can be defined:
vg in Eqns. (5) and (6) is zero except in the damping layers 06
—L <z <z andL > z > x, on the left and right ends A;;(t) = p/aD (thm,d& 1,7 =1,2,3; (14)
b

of the free surface, and, is the initial location of the lead
free-surface node of the layerstat 0. Wai(t) = _p/ (% i Oy + 1|V¢|2 + gy)n;ds. (15)
After (3, is solved, the “no-slip” boundary condition on op, O~ Ot 2
9D, is satisfied by generating vorticity of an opposite sign with the use of these coefficients, Eqns. (10-12) can be
to nullify the tangential surface velocity from reduced to give
To obtain the forces and moment on the body, we nee

to solve ford 3y, /0t, sincedey, /Ot is needed in Euler's in- (M + An) A (A1 — M?_Jg) Lo
tegral to evaluate the surface pressure. A (M + A22) (A2 + Mz,) Yo
5 . (A3 — Myy) (Ase +Mz,) (I, + Asz) o
szWIQQy, (7) Wi + Mz 62 ]
= W42 + Mggd2 — Mg . (16)
Thus, an integral equation similar to Eqn. (3) has to be Wy3 — Mgz,

set up in parallel fobg;,/0t. The boundary conditions of
O¢y /0t on D are given by Eqn. (6). O8D,,

31/%
ot

Equation (16) describes completely the full dynamic cou-
pling between the fluid and body and all modes of motion.
Oy i Ityields (&5, §s, ¢t) at any givert without relying on any fi-

ot nite differencing scheme in time. The treatment is therefore

Tpv — Pou + &[(p — uw)T + (g — v)y]}.  (8) fully implicit and stable.

1
= &y — o — SOR] - {



B . Roll Decay from an initial roll angle of 10 deg: a(t)/ao
Body Profilas of Two Shapes w. Keals (Tumblehome body: Radius of gyration abt G, 9.243cm; Vcg= -6.0cm)
T T T T Rectangular body, Radiusof gyration abt G: 10.06cm, Vcg=-3.30 cm)
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Figure 2: Body Profiles for a Rectangular Section and ] ] ) )
a Tumblehome Section Figure 3: Time History of Roll for Rectangular and Tumblehome Bodies
3 Results and Discussion damping besides wave damping. Figure 8 shows the con-

Figure 2 shows two body sections to which the method 6 uration of the cylinder in equilibrium in laboratory con-
ition . It is allowed to roll about the waterline. The com-

solution in Section 2 is applied. One is a rectangular body, .
the other a tumblehome-shaped body with a flat botto arison between the experimental measurements and the

Both have beams of 30.5cm. These are overlaid to inoq_'redictions of FSRVM is shown in Figure 9. The agree-

cate their relative dimensions. The bilge keel depth to h ent wiFh the viscous—flu.id model is excellent for the first
beam ratioKp, is 0.079. The reference peri@dfor roll is our perlpds. For .Iar'ge time, and smal! an.gle of rqll, the
1.958 seconds. Figure 3 shows the slow roll decay of boﬁ,?sumptlon of a frictionless rotary bearing is not quite ap-
cylinders from an initial angle of0° in an inviscid fluid. It plicable.

seems puzzling that the tumblehome-body motion decays Conclusions

faster than the rectangular shape, since it is more roundgdneoretical study of the roll decay of cylinders is pre-
and its keels are at about the same location. The explaR@nied. The study examines the viscous effects on the de-
tion for this is related to the frequency dependency of theyy which are substantial for bodies with bilge keels. In
damping. Figure 4 shows the linear, wave dampiagof  the 3DOF coupled system, the body is seen to drift slightly
the two sections versus= w./B/2g. Itis clear thatbased i, 4 direction of the higher initial position of the two keels
on the “crude” oscillation frequency of the two bodies, reciy the cases investigated. The decay rate is well substanti-
angular sectiony = 0.64, tumblehome section; = 0.49,  4ted by an experiment for a rectangular cylinder conducted

the latter has a much higher amount of damping. Note thaf yniversity of California, lending much credence to the
the period of oscillation is not constant, increasing SOM&sethod of solution.

what slowly in time.
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Linear Roll Damping for Rectangular and Tumblehome Bodies

Roll Response of a Circular Cylinder with Bilge Keels, Inviscid Case
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Figure 4: Linear Roll Damping for Rectangular and Tumblehomigure 5: Roll, Sway and Heave response of a Circular Cylinder,
Bodies as Functions a@f?. Kp =0.1,a, = 40° - Nonlinear Inviscid Solution.

Roll Response of a Circular Cylinder with Bilge Keels, Viscous Case

Comparison Between Viscous and Inviscid Cases, Circular Cylinder with Bilge Keels
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Figure 6: Roll, Sway and Heave response of a Circular Cylinddfjgure

Kp = 0.1, a, = 40°, with Viscosity.

Figure 8: Laboratory Experiment of a Cylinder for Roll DecayFigure 9: Transient Roll Decay of a Rectangular Cylinder with-

Test.

Fluid.

7: Comparison of Time Histories, Inviscid vs Viscous

Transient Roll Response, Experiments and Computations
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