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SUMMARY 
 
A curious feature of the ordinary linear theory of irregular waves is that the particle trajectories “escape” from time to 
time. This is easily shown by time-history simulation (e.g. with MATHCAD), and is to be expected, since the forward 
velocity of a particle will occasionally exceed the phase velocity. Were the wave steady, the streamlines in a frame 
moving with the wave would then diverge from a stagnation-point. 
 
The phenomenon is a simple explanation for wave breaking in deep water. If the water surface is taken as a sheet of 
particles (i.e. the kinematic free surface condition is applied exactly, rather than in the usual approximate way), the 
breaking waves appear as local eruptions of the free surface. These can be cut off when the surface at the front of the 
wave becomes vertical, to give a remarkably realistic-looking model of breaking waves, based entirely on the velocity 
potentials from linear theory. 
 
The most striking feature of the model is that the frequency of wave breaking depends not just on the average steepness 
(i.e. significant wave height ÷ wavelength at spectral peak) but on the bandwidth. Waves which are, on average, not at all 
steep still break if the bandwidth is large enough. This is consistent with observation, and is in contrast to the 
conventional view of wave breaking as an instability developing from a regular wave train. That is the narrow-bandwidth 
case, where the waves are, on average, steep. 
 
1.   ENGINEERING BACKGROUND 
 
Breaking waves are one of the main hazards to floating 
bodies. For small vessels, like fishing boats, the risk is 
capsize – the loss of the trawler Helland Hansen, for 
example, is well-established as being the result of capsize 
in a breaking wave [1]. For large vessels like tankers and 
bulk carriers, the risk is of impact damage to hull plating. 
Bow damage is reported not infrequently, see the case of 
the tanker Wilstar, for example, where the bow damage 
was very severe [2]. A recent case is the oil production 
ship Schiehallion, where the bow plating was ruptured 
over a small area well above the water line, by a pressure 
which must have been about 75 tonnes/m2. See Figure 1 
below. 
 

 
 

Fig 1. Bow damage on the Schiehallion FPSO 
 
To predict the likelihood of such damage it is necessary 
to know the probability of encountering a wavefront 
which is sufficiently steep. According to the ordinary 

linear theory of irregular waves, the water surface 
elevation is described for example by the Pierson-
Moskowitz spectrum ([3] p.315): 
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where wm is the mean frequency (1.408 times the peak 
frequency wp in this case), and s is the average steepness 
based on it (i.e. significant wave height ÷ length of wave 
of frequency wm), taken as 0.05 by definition of the P-M 
spectrum. In deep water the transfer-function between 
water surface elevation and water surface slope is iω2/g 
so the spectrum of water surface slope is: 
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Since this spectrum behaves as ω-1 as ω → ∞, its integral 
is infinite, and so the significant water slope is infinite 
too. Thus no useful predictions of wavefront steepness 
can be made with conventional sea spectra, all of which 
share this property. 
 
There is an engineering literature of “freak waves” which 
addresses the problem of predicting extreme waves [4] - 
but it includes the problem of exceptionally high waves, 
which are a hazard to the decks of fixed offshore 
structures, without breaking. The problem of wave 
breaking in deep water has also engaged the attention of 
a number of mathematicians – this literature is reviewed 
in a most attractive manner by Peregrine [5]. 
 
2. “ESCAPE” OF PARTICLE TRAJECTORIES IN 
LINEAR IRREGULAR WAVES. 

 
Given the horizontal and vertical water velocity in deep-
water linear irregular waves, i.e. 
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in the usual notation (see e.g. [3] p.312), the trajectory of 
a water particle can be found simply by numerical time-
history integration. Figure 2 below shows the trajectory 
of a particle obtained in this way with MATHCAD, 
using the P-M spectrum (1) and taking 300 discrete 
frequencies in (3) and (4), equally spaced from 0 to 3wm. 
The particle is from the still-water free surface z=0 and is 
started from its linear-theory position. 
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Fig 2. Particle trajectory in linear irregular waves 

 
The Stokes drift ([3] p.252) of the particle is very evident, 
as is its eventual “escape”. The latter occurs when the 
forward velocity of the particle exceeds the phase 
velocity of the wave, which occurs from time to time due 
to the magnifying effect in wave crests of the exponential 
term in (3). That this will produce an “escape” can be 
seen from Figure 3 below, which shows the streamlines 
in the linear-theory model of a regular wave, viewed in a 
frame moving with the velocity V of the wave, so that the 
flow is steady. 
 
 
 
 
 
 
 
 
 

 
Fig 3. A linear-theory regular wave seen as a steady 

flow, in a frame moving at the wave speed. 
 
If the horizontal and vertical velocity components in a 
stationary frame were {vekzcoskx, vekzsinkx}, say, then 
they become {vekzcoskx-V, vekzsinkx} in the moving 
frame, so there will be a stagnation-point as shown, in 
line with the crest position. At this stagnation-point the 
vertical velocity is nil and the wave velocity V equals the 
horizontal particle velocity vekzcoskx in a stationary 
frame. Above this the flow in the moving frame reverses, 
producing the divergence shown. Particles above a 
certain dividing streamline thus “escape”. 

3. THE FREE SURFACE AS A SHEET OF 
PARTICLES. 
 
A natural extension from this single particle is a sheet of 
such particles. This moving surface satisfies the 
kinematic free-surface condition exactly, by definition. 
Moreover, the pressure felt by a particle as it orbits is 
constant (i.e. it satisfies the dynamic free-surface 
condition), except for slow second-order variations, 
which seem unlikely to affect wave breaking. 
 
This can be seen by considering the rates-of-change seen 
by the particle in the hydrostatic, transient and Bernoulli 
pressure components. The hydrostatic pressure -ρgz only 
changes convectively, i.e. as a result of the particle’s 
motion. It rate-of-change is -ρgdz/dt = -ρg∂φ/∂z, where φ 
is the velocity potential. The transient pressure -ρ∂φ/∂t  
changes non-convectively: if the jth component of the 
velocity potential is φj , the non-convective rate-of-
change of the jth component of transient pressure is: 
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which exactly cancels the jth component of the rate-of-
change of hydrostatic pressure. The convective rate-of-
change in transient pressure is: 
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where v is the total particle velocity. This is clearly 
second order, so, to second order, it is sufficient to 
evaluate (6) at the mean position of the particle. It can 
readily be shown to have difference-frequency 
components only, which is not surprising because in 
regular waves  v.v = |v|2 is constant at any fixed point. (6) 
is also equal to the non-convective rate-of-change of the 
Bernoulli pressure -½ρ|v|2 – which it is likewise 
sufficient to evaluate it at a fixed point, to second order. 
And by the same token, its convective rate-of-change is 
zero, to second order. 
 
Thus if all the particles in the sheet are at the same 
pressure initially, they will remain approximately so, and 
thus be a good model of the free surface. And the 
approximation could readily be improved, by including 
the second-order potential from second-order irregular 
wave theory, which cancels the slow pressure variations 
just mentioned. To prevent the simulation from starting 
when the wave is breaking, the particles can be held on 
the zero-pressure surface until it crosses z = 0, and then 
released. As the particles drift downwave by Stokes drift, 
new particles can continuously be introduced in this way, 
and deleted when they have drifted too far.  
 
Without the refinement of the second-order potential, the 
linear-theory surface-particle position can be used as an 
approximation to a zero-pressure surface. In regular 
waves this potential is zero anyway, and the same 
pressure error is applied to each particle (because of the 
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release strategy just described), thus giving the correct 
second-order wave shape. 
 
 
4. BREAKING WAVES FROM ESCAPING 
PARTICLES 
 
The interest in such a simulation is of course in what 
happens when the particles “escape” in irregular waves. 
Figure 4 below shows a typical case – in fact the same 
case as Figure 2, at the final instant there. 
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Fig 4. Eruption of particle-sheet wave (travelling 

from left to right) when particles “escape” 
 
As can be seen, the water surface simply erupts, with the 
front face of the eruption looking remarkably like the 
front face of a breaking wave. If the eruption is cut off at 
the point where the front face becomes vertical, and the 
surface is sloped down behind that as a straight line, as 
shown dotted in Figure 4, the resemblance to a breaking 
wave is very strong indeed. 
 
With MATHCAD the particles which have been cut off 
can simply be relocated to this straight line (and the 
particle distribution along the whole surface can be made 
uniform, for good measure, by interpolation), and the 
simulation continued. The resulting waves can be viewed 
with the animation facility in MATHCAD, and look 
remarkably realistic. Figure 5 below shows a typical 
breaking wave from such an animation (the next wave in 
the same case as Figure 4), compared with an exactly-
computed deep water breaking-wave profile, from [5]. 
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Fig 5. Comparison with Peregrine’s exactly-computed 

deep-water breaking wave ([5] fig 8c). 
 
If any reader is interested in reproducing these results, 
which are all based on linear wave theory (and are 
accurate to second order when the waves are regular, see 
section 3), I would be pleased to e-mail them a copy of 
my complete MATHCAD spreadsheet. 
 

5. FREQUENCY OF WAVE BREAKING: 
IMPORTANCE OF BANDWIDTH 
 
To return to the problem posed in section 1, a first 
application for this simulation is to investigate the 
frequency of wave breaking. Since wave breaking occurs 
when the particle velocity in a crest exceeds the phase 
velocity, the pertinent parameter will be the significant 
value of the former. The spectrum of particle velocity at 
a crest elevation equal to the significant wave height h, 
say, is obtained from the transfer function for horizontal 
velocity at this elevation, which is ωekh. For the P-M 
spectrum (1), this gives the velocity spectrum as: 
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which is plotted in Figure 6 below. 
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Fig 6. Spectrum of particle velocity in crest 
 
As can be seen, the spectrum diverges rapidly at large ω 
– it is limited in Figure 6 only by the upper frequency 
limit of 3wm arbitrarily chosen after equations (3) and (4). 
 
Thus we reach the important conclusion that the 
frequency of wave breaking will be very sensitive to the 
bandwidth of the spectrum, especially the extent of its 
high-frequency “tail”. The other, practical, conclusion is 
that no useful results can be obtained using any of the 
conventional sea spectra, because the high-frequency 
“tails” are too dominant - the problem is effectively a 
more severe version of that mentioned after equation (2). 
 
We therefore switch to a simple sine-squared spectrum: 
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where the peak frequency is wp and the bandwidth is πwb. 
This clearly avoids all problems at large ω, because it is 
zero there. Of course, this is only the “underlying” 
spectrum of the linear waves - the as-seen spectrum (i.e. 
the spectrum of the water surface elevation time-history 
generated by our particle-sheet waves) will contain 
contributions from all the non-linearities. The breaking 
waves, in particular, will give contributions which only 
decay approximately as ω-2 as ω → ∞ (because the 
Fourier transform of a “step” discontinuity decays as ω-1 
as ω → ∞, see [6] table 1, and thus its contribution to the 
spectrum decays as ω-2 as ω → ∞). 
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When A in (8) is chosen to give the same average 
steepness as the P-M spectrum (1) (i.e. 4√(½Aπwb) = 
0.025(2πg/wp

2), since for a P-M spectrum the average 
steepness based on wp is 0.025), and to have a similar-
looking peak (i.e. πwb=wp, say), the MATHCAD 
simulation gives no breaking at all, in simulations of 
hundreds of waves. This is in contrast to the earlier 
simulations of Figures 2 and 4, with the P-M spectrum. 
To confirm that this is due to the omission of the high-
frequency “tail” of the spectrum, we can add another 
small sine-squared spectrum of 3 times the frequency, 
while keeping the overall significant waveheight the 
same. If these additional waves have the same steepness 
as the original ones, say, they will only have 1/9 of the 
significant waveheight and 1/243 of the spectral ordinate, 
but will substantially increase the significant crest 
velocity considered above. And the MATHCAD 
simulation now gives a breaking wave every ten waves 
or so, confirming the importance of the bandwidth. 
 
This latter result could be readily tested in a wave flume 
(or in a numerical wave flume) by allowing a group of 
longer-period waves to overtake a group of much smaller 
shorter-period waves, and seeing if breaking is initiated. 
 
That waves do sometimes break even if they are not very 
steep is certainly observed at sea. Figure 6 below is a 
striking example from [4], with eye-witness account by 
Capt. G.A.Chase of the Maine Maritime Academy. 
 

  
Fig 7. Large wave breaking at sea 

Taken aboard the SS Spray (ex-Gulf Spray) in about February of 1986 
(best recollection), in the Gulf Stream, off of Charleston.  
Circumstances: A substantial gale was moving across Long Island, 
sending a very long swell down our way, meeting the Gulf Stream. We 
saw several rogue waves during the late morning on the horizon, but 
thought they were whales jumping. It was actually a nice day with light 
breezes and no significant sea. Only the very long swell, of about 15 
feet high and probably 600 to 1000 feet long. This one hit us at the 
change of the watch at about noon. The photographer was an engineer 
(name forgotten), and this was the last photo on his roll of film. We 
were on the wing of the bridge, with a height of eye of 56 feet, and this 
wave broke over our heads. This shot was taken as we were diving 
down off the face of the second of a set of three waves, so the ship just 
kept falling into the trough, which just kept opening up under us. It bent 
the foremast (shown) back about 20 degrees, tore the foreword 
firefighting station (also shown) off the deck (rails, monitor, platform 
and all) and threw it against the face of the house. It also bent all the 
catwalks back severely. Later that night, about 1930, another wave hit 
the after house, hitting the stack and sending solid water down into the 
engine room through the forced draft blower intakes.  

 
Note the observation that there was “only a very long 
swell, of about 15 ft high and probably 600-1000 ft long”. 
 
 
6. CONTRAST WITH VIEW THAT WAVES 
BREAK DUE TO INSTABILITY 
 
The view that waves break due to instability is described 
at some length (but without DHP’s enthusiastic 
endorsement!) in the admirable review already cited [5]. 
The origin of this view lies in the famous Benjamin-Feir 
instability [7], by which a regular wavetrain becomes 
increasingly unstable as it steepens. From the viewpoint 
of wave breaking as particle “escape” under linear theory, 
that is a very special case, where the bandwidth is 
vanishingly narrow. If the bandwidth is larger, the waves 
break sooner. 
 
 
7. CONTRAST WITH VIEW THAT LINEAR 
WAVE KINEMATICS NEED “STRETCHING”. 
 
A more prosaic contrast is with the widely-held view in 
the oil industry (e.g. [8] para 2.3.1.c(2)) that in irregular 
waves linear wave theory over-predicts water velocities 
in wave crests, and requires “Wheeler stretching” to 
reduce them. The contrary view is expressed in this 
present paper - that those “anomalous” crest velocities 
are realistic, and explain wave breaking. 
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"Escape" of particle trajectories in linear irregular waves: A new 
explanation for wave breaking and model of breaking waves. 
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 Rainey, R.C.T. 
Discusser : 
 Alexander H. Day 
Questions / Comments :  
 
The author presents some interesting and thought-provoking results. However I am a 
little concerned about the consistency of the approach presented. In particular I am 
worried about the use of linear superposition (as in equations 3 & 4) in conjunction 
with a second order particle velocity (implied by the use of instantaneous position 
rather than mean position). I'm also worried about the consistency of the free surface 
boundary conditions, since it seems that the kinematic condition is satisfied to a 
different order  of approximation than the dynamic condition. I wonder if these 
inconsistencies contribute to the particle "escape"? 
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There is nothing inconsistent in my approach. There is no single "consistent" 
approach to water waves, any more than there is, for example, to the problem of a 
simple pendulum. There, we can either write a differential  equation for the angular 
motion, and obtain it as as θsin(ωt), or one for the translational motion, and obtain it 
as Xsin(ωt). These solutions have different higher-order errors, but they are both 
correct to first order. 
 
Likewise with water waves, the classical approach of applying a boundary condition 
on z=0, is not the only approach. We can alternatively observe that the solution to 
Laplace's equation must of the form (3) & (4), by separation of variables. Then, we 
can apply boundary conditions on a sheet of particles, and observe that the pressure 
cancellation (5) applies, provided ω2=kg. And that we can achieve pressure 
cancellation to second order, if we add a second-order potential to cancel (6). 
 
The waves we obtain in this way agree exactly with the classical Stokes 1st and 2nd 
order waves, to 1st and 2nd order respectively. They are effectively "alternative" linear 
or second order waves, every bit as consistent and rigorous as the classical linear and 
second order waves. It is only the higher-order components which are different. 
 
You could object that the particle "escape" that we obtain is just such a higher-order 
effect, and thus has no validity. But you could likewise object that the "escape" to 
infinity of an Euler strut, when it buckles, has no validity because it violates the 
small-deflection assumption used to derive it. It is suggestive, though, is it not? 
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In computations with "exact" irrotational 2D flow, for initial conditions taken as 
realisations of wind wave spectra, wave breaking usually occurred in less than 50 
periods. 
The domain was periodic and the spectrum has maximum wave number twice the 
minimum plus all second-order interactions. 
 
 
Author’s Reply : 
(If Available) 

 

 
That is very interesting - your initial conditions should make your velocity at first like 
mine (i.e. like my (3) and (4), plus 2nd order difference-frequency terms), but with a 
very narrow bandwidth (2:1 ratio of maximum to minimum wave number, plus 
difference frequencies, whereas I have at least 20:1). Perhaps my simulation would 
not give breaking waves very often for this case. If so, my suggestion would be that 
your waves are evolving over the first part of your simulation, so that by the time 
breaking occurs, your bandwidth (in the same sense, i.e. the range of frequencies in 
the "underlying" spectrum of the velocity field) is much wider. 
 
If I am right, the time taken for the wave to break in your simulation will not follow 
an exponential distribution, as it would if the waves were equally likely to break at all 
times, but will be biased towards long times, because the waves need to evolve first. 
 
Some dependence of breaking-frequency on bandwidth has of course long been 
acknowledged. Dr. R.G.Standing has drawn my attention to a branch of 1980s 
literature (papers by Snyder & Kennedy in vol 13 of J.Phys.Oceanography, by 
Srokosz in vol 16 of same, and Greenhow in vol 16 of Ocean Engng.) which seeks to 
correlate breaking with m4, i.e. the fourth moment of the surface elevation spectrum. 
This is the same as the linear-theory water surface slope or particle acceleration in g, 
see my equation (2) (these authors acknowledge the major difficulty I highlight there, 
that both are infinite with all the standard spectra). They predict quite a strong 
dependence of breaking-frequency on bandwidth - but not as strong as I do. 
 
For example, in regular waves, I get breaking when ka is 0.42 (i.e. a linear-theory 
acceleration of 0.42g), see my reply to Tuck. But in the double sine-squared spectrum 
considered above figure 7, where I get breaking every ten waves or so, the linear-
theory RMS acceleration  is only 0.061g, so the acceleration reached every 10 waves 
is only  0.061(2ln10)^0.5 = 0.13g. So I am saying the breaking-frequency is not 
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simply a matter of the linear predictions of acceleration - increasing the bandwidth is 
more important than that. 
 
However,  my  main argument is not a quantitative one about bandwidth, but is about 
our theoretical understanding of the problem of breaking. Experimentally, regular 
waves are observed to break at about ka = 0.4, yet conventional linear theory only 
gives a water surface steepness of 0.4 for that case, and conventional second-order 
theory only gives a steepness of 0.5. Since the breaking requires infinite steepness, the 
conventional view is that the explanation of wave breaking must be sought in some 
fully-nonlinear process beyond these simple wave theories. I disagree. If the 
assumptions of wave theory are taken in the order I advocate (which is no less 
rigorous than the classical one, see my reply to Day), breaking appears with those 
simple theories, at ka = 0.42.. 
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In a little known section of Wehausen and Laitone (see p.740 of "Surface Waves", in 
Encyclopedia of Physics, vol.9, Berlin-Gotingen-Heidelberg: Springer-Verlag, 1960) 
there exists an exact result by Fritz John who develops an exact relation (eqn. 34.29) 
between the wave particle velocity and acceleration on the free surface and the 
Eulerian wave elevation and slope in the deterministic and stochastic case.  The 
relation is an ordinary differential equation with time dependent coefficients.  There 
exists a large body of literature on the stability properties of such equations which 
may confirm your very interesting result.  I wonder if you are aware of it and if you 
think this is a fruitful approach to follow?  
 
 
Author’s Reply : 
(If Available) 

 

 
I was certainly unaware of John's relation 34.29. If I understand it correctly, it gives 
the surface particle velocity, starting from a water surface shape η(x,t) which already 
satisfies both the dynamic and kinematic free-surface conditions exactly. 
 
My "escape" phenomenon, however, is associated with water surface shapes which do 
not satisfy the dynamic free-surface condition exactly. With the exact waves 
envisaged by John, the manfestation of breaking is not an "escape" of the surface 
particles, but points where the surface elevation η(x,t) becomes mutivalued. It is not 
clear to me that his relation 34.29 is well-defined at these points - but even if it is, the 
relation would be taking the fact of breaking as its starting-point. 
 
From my point of view, that is tantamount to assuming what I am seeking to explain. 
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First Author : 
 Rainey, R.C.T. 
Discusser : 
 Ernest O. Tuck 
Questions / Comments :  
 
An equivalent of Fig.3 appears in a 1965 JFM paper by me.  I actually showed in my 
paper a somewhat greater domain, and the streamlines at greater heights get even 
more bizarre.  I have an artistic needle-pointed version of this flow held displayed as a 
hanging decoration on my office wall.  When some people see this picture, they say to 
me - "surely this describes a breaking wave"?  Up till now, I have always said, "No, it 
has nothing to do with breaking".  My purpose was to show how "unrealistic" the 
linearized streamlines can be.  However, maybe now I must change my answer from 
"No", to at least "Maybe"! 
 
 
Author’s Reply : 
(If Available) 

 

 
The figure from your 1965 paper (JFM 22:401-414) is reproduced by J.V. Wehausen 
on p.215 of his 1973 review paper "The Wave Resistance of Ships" (Adv. Appl. 
Mech. 13:93-245), where it appears as shown below. Like you, Wehausen believed 
that the "escape" of the particles had no physical significance, remarking "Whereas 
streamlines computed according to the linearised theory would have given physically 
reasonable, athough approximate, streamlines, the 'exact' streamlines are physically 
nonsensical". 
 

 
 
 
However, the waves in the figure are over half a wavelength high, which is, 
physically, well beyond breaking. Thus my alternative interpretation of the 
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streamlines, which is that the waves have already broken, is physically plausible. 
 
It also raises the question of the threshold steepness of regular waves at which the 
particles begin to "escape", and thus (according to me) the waves break. If my 
MATHCAD simulation is run with a linear wave potential of steepness ka, and started 
with the particles in their linear-theory positions (both horizontal and vertical 
motions) in a wave trough, then when ka = 0.48, the waves just begin to break (i.e. 
their front face becomes vertical, and the simulation relocates the particles as shown 
in my Fig.4) as the first crest passes that trough position. 
 
If the particles are started in their second-order positions in a wave trough (which 
merely requires them to be raised by 0.5ka2, the second-order potential being nil in 
regular waves, of course), the corresponding value of ka is 0.42. 
 
These are also physically plausible values. 
 
 
 


