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The numerical prediction of the slow-drift motion of moored structures requires the knowledge of
the second-order wave loads taking place at the difference frequencies of the incoming wave-system.
It is quite a numerical endeavor to compute these QTF’s and, most often, use is made of the so-called
Newman’s approximation whereby the QTF’s are based upon the drift forces in regular waves. This
procedure applies well to massive structures such as barges or FPSQO’s, which have very low natural
frequencies in surge, sway and yaw, and for which the drift forces in regular waves are large.

In this paper we are concerned with more slender structures such as semi-submersibles, TLP’s or
spar towers, which consist of cylinders with diameters in the 10-30 m range. In 12-18 s wave periods,
this means that ka varies from near 0 up to 0.5, £ being the wave number and a the radius. In this
ka range the first-order wave loads and responses can be fairly well approximated through a Morison
type approach, where only the inertia term is retained. To obtain the drift forces diffraction-radiation
analysis becomes necessary. As these drift forces are small at low ka values, and we are concerned not
only with surge, sway and yaw, but also roll, pitch and possibly heave, which have natural frequencies
much closer to the wave frequencies, it turns out that Newman’s approximation does not provide good
estimates of the QTF’s around the resonant frequencies.

A second-order extension of the inertia term in the Morison equation is provided by Rainey’s equa-
tions (1989). They have been applied by Ma & Patel (2001) to study the slow surge and pitch motions
of a spar platform (see also Kim & Chen, 1994). The questions that arise are, how accurate this pro-
cedure is, and whether it can be related to the exact QTF calculation or to Newman’s approximation.
Here we suggest that the two approaches can likely be used in combination and that they somehow
supplement each other.

For the sake of simplicity, we deal with fixed bodies. The correct way to derive the QTF’s is to solve
the first-order diffraction problem, in a bichromatic wave system, and then derive the hydrodynamic
loads to second-order. The main numerical difficulty stems from the second-order diffraction potential.

We assume uni-directional sea-states propagating along the Ox axis. The first-order velocity poten-
tial, including incident and diffracted contributions, can be written
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while the second-order potential, at the difference frequency w; — ws, consists of an incident and a
diffracted component
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Ay and As are the wave amplitudes.

In arbitrary waterdepth A the incident component @(12) (x,y, z) has a rather complicated expression,
so we do not reproduce it here. The diffracted component obeys a boundary value problem with the
conditions awg)/an = —890([2)/871 at the mean body surface and g&pg)/az — (w1 — we)? @g) = ol
at the mean free surface.

The second-order horizontal load, at the difference frequency wi — wo, consists of 5 terms:
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where S¢, is the mean wetted hull, Ty the mean water line, 7§ the normal vector (into the fluid), v
the radiation potential in surge at frequency w; — w9 and * designates the complex conjugate.
When w; —wy — 0 the QTF reduces to the drift force fi(w) = fg) (w,w) + fég)L(w,w). This is the

basis for Newman’s approximations (after his 1974 paper) which consist in approximating f£2) from
fa- For instance the following approximation has been proposed (Molin & Bureau, 1980):
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For a fixed vertical cylinder, standing on the sea-floor, the components fg), fég)L, fI(Q) and f1(721)
can be obtained analytically. The free surface integral (8) requires some effort. We checked that its
contribution is negligible in the practical application considered here.

According to Rainey, the horizontal force acting on the cylinder is given by
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where we have discarded the ”point load” at the free surface intersection, of third-order in the wave
amplitude. There is no point load at the bottom since the cylinder is standing on the sea-floor.

In this equation U and W are the horizontal and vertical components of the flow velocity associated
with the incoming waves. In bichromatic seas the second-order force at the difference frequency can
easily be derived. When the waterdepth is large at first-order (k1h and koh > 3), one gets
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It is easy to check that, when |k — k2| a < 1 (in practice |k1 — ka| a < 0.5), the second term in the
expression above provides a fairly good approximation of f 1(2) + f gl)

Now we compare the first term in Rainey’s expression (11) to the exact calculation of fg) + fég)L
and to Newman’s approximation (9). We take a waterdepth h equal to 20 times the radius a, and
we vary (k1 — k9)/k1 from 0 to 0.5 for kja = 0.1, 0.2 and 0.4. The results are shown in figures 1
through 3. The QTF’s are made non-dimensional by division by pga. It can be observed that, all
over the range of kja and kea values, Newman agrees well with the real part of fg) + fég)L, while
Rainey agrees with the imaginary part: on this particular case of a standing cylinder Newman and
Rainey are complementary. The intuitive, if not physical, interpretation, is that Newman takes care
of what happens to the wave field at infinity, while Rainey, which is waveless, takes care of the local
nonlinearities.

In figures 1 and 2 it can be noticed that the imaginary part of the QTF quickly becomes dominant
as the difference frequency increases from zero. fI(Q) and fgl) also contribute only to the imaginary
part. This means that Newman’s approximation alone provides a poor estimate of the QTF when the
difference frequency is not very small.
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Figure 1: Exact and approximate values of fg) + fl(/[%)L for kja =0.1.
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Figure 2: Exact and approximate values of fg) + fl(/[%)L for kja = 0.2.

It may be wondered what is the degree of generality of the result that we have obtained. For instance
what happens if the cylinder is free to move, or truncated, or completely submerged. And whether it
also applies to the other components of the QTF’s (in heave, pitch and roll).

The 2D case of a fixed horizontal cylinder, completely submerged, is easy to tackle. It was considered
by Rainey (1992) in regular waves (see also Ogilvie, 1963). In regular waves, when ka < 1 and the
cylinder is not too close to the free surface, one obtains that the vertical drift force is approximately
given by

Fy, =2pgma?® k? A2 ¢ 2k (12)

(where d is the immersion) and that Rainey provides the same result. In this case Newman’s approx-



imation and Rainey’s equations are redundant. The interpretation is that this vertical drift force has
nothing to do with the wave-field at infinity. It is just related to a local mean vertical acceleration in
the fluid kinematics (Rainey 1992).

This case suggests that, in combination with Rainey’s equations, Newman’s approximation should
be applied only to that part of the drift force that one obtains through the far-field method.

Going back to the vertical cylinder, we can wonder whether this procedure would work when it
is free to surge and pitch. A question that arises is whether Rainey’s equations will yield any drift
force in regular waves. The answer is no, provided the cylinder motion be in phase with the wave
action: the radiation damping must be zero (which is fine under Rainey’s low ka assumption) and
the cylinder should extract no energy from the waves (meaning no other source of damping). Under
this condition, like for the fixed cylinder, Rainey will contribute only to the imaginary part of the QTF.
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Figure 3: Exact and approximate values of fg) + fl(/[%)L for k1a = 0.4.
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