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MIXING LAYER AT FREE SURFACE
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SUMMARY

A simple mathematical model for the evolution of a mixing layer with pressure gradient is developed. The
problem of mixing layer interaction with a free surface in water and its transition in a turbulent surface jet is
considered; in particular, the velocity field and basic characteristics of turbulent flow in two-dimensional mixing

layers and surface jets are obtained.
1. INTRODUCTION

The interaction of turbulent flows with a free bound-
ary is an important part of realistic wave description
in many applications. The turbulence in a surface
layer may be generated in many ways (moving ves-
sels, topography, breaking waves etc.). This prob-
lem was studied theoretically and experimentally in
[1-6]. Recent experimental methods such as Particle
Tmage Velocimetry (PTV) reveal the very complicated
flow patterns of turbulent flow in the surface layer
in spilling breakers, hydraulic jumps, turbulent bores
[7]. Tt is clear that the main features of the turbulent
layer evolution can be simulated only by the rather
complicated mathematical models.

The goal of the present paper is to develop the math-
ematical model of turbulent layer evolution in open
channel flow, which is suitable for the description of
velocity fields and turbulence characteristics in mixing
layers and surface jets, but it should be simple enough
to find some solutions in explicit form. For this pur-
pose we consider the two—level flow description. As
the first step, the three—layer shallow water equations,
which describe the mean flow evolution with entrain-
ment of fluid from the potential layers into the turbu-
lent interlayer, are derived. Then, the mean turbulent
energy and the thickness of the turbulent layer, which
have been found from the layered model of flow, are
used as the scales in a two-dimensional turbulent flow
model.

For the three-layer shallow water approximation,
the approach [8], developed for stratified two—layer
flows of miscible fluid, 1s used.
here is in wusing the total conservation laws of
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mass, momentum and energy to find the mean flow
in the turbulent intermediate layer. The bound-
ary layer approximation for the Reynolds equa-
tions is based on the hypothesis from [9] about
Reynolds stresses expression in free shear turbulent
flows. For steady—state flows, the problem on ve-
locity field restoring in the turbulent layer is re-
duced to the semilinear initial-boundary problem

for a hyperbolic system of differential equations. This
approach is applied to the problem on the mixing layer
evolution at a free surface and its transition into a sur-
face jet.

2. SHALLOW WATER EQUATIONS

We consider the problem of the formation of a mix-
ing layer in an incompressible homogeneous fluid for
open channel flows. Aeration of the flow is ignored,
and, hence, the liquid density p is constant (p = 1).
We apply the three-layer scheme of flow, in which the
mixing layer is considered as an intermediate turbu-
lent layer between two layers with potential flow. For
upper and lower layers we use the nonhomogeneous
shallow water equations in which the entrainment of
fluid from the layers into the mixing layer is taken
into account. To describe the evolution of the aver-
aged quantities in the mixing layer, we add to the
system the total conservation laws of mass, momen-
tum and energy [10]. Under the assumption of hydro-
static pressure distribution in the layers, the govern-

ing equations are written as
ht + (h+u+)x — +
hy +(h"u7)y = —x
uf + (0.5u"’2 —|—gH) =0
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Here t 1is the time, x is the horizontal coordinate,

g is the gravity acceleration, ht, h~ are the depths,

ut, u~™ are the mean horizontal velocities in the up-
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Figurel: Mixing layer at a free surface

(uf /N/gHo =2, uy /\/gHo = 0.7, hy /Hy = 0.9.)

per and lower layer, respectively, n is the thickness
and @ 1s the mean horizontal velocity in the in-
terlayer, H = ht 4+ n 4+ h™ 1is the total depth and
Q=htut +nu+h u".

The entrainment rate YT is supposed to be propor-
tional to the root-mean-square velocity ¢ of turbulent

flow:
+

X = UOQa
where the coefficient oy = 0.15 characterizes the ra-
tio of the vertical and horizontal scales in the shallow
water approximation, and it may be eliminated from
(1) by replacing of independent variables. The energy
dissipation term £ is taken in the form:

£=10¢>, 0= const

Note that (1) describes the mixing layer evolution for
h* > 0. If, say, h* =0 at 2 = 2, we have the tran-
sition of the mixing layer in a surface jet and (1) will
be correct for the surface jet with ht =0, yt =

(Fig 1).
3. MIXING LAYER
3.1 MEAN FLOW EVOLUTION

A steady-state two-dimensional mixing layer forms
when two layers of fluid with depths hé’, hy and
velocities u}, uy merge at = = 0 (Fig 1). As a
consequence of (1) we have the following relations for
mean characteristics of the flow

htut +0.5Q = hé’ué’ =Qt

h=u™ +05Q =hjuy =Q~

0.5ut? + gH = 0.5ul” + gHo = J*

s 2 NG
0.5u="4+gH =05bu, +gHo=J
htut” + nu? + h=u=" + 0.59H? =

hiud® + hyug”’ +05gH2 = F

Here @ = nu, Hy = hEIJ' + h; and all unknown
variables can be expressed from (2) as functions of
Q. For the stationary mixing layer (1) is reduced to
the system of ODE

d
g = 2004

(3)

dqg oo
dz~ Q
where d =0/(200), fi(Q)=1u>+ 0.5ut” + 0.5u=" —

u(ut +u~). Egs. 3 may be rewritten as a linear ODE
with the unknown function ¢? = ¢%(Q)

(ﬁ(@) S+ 6>aoq2),

W~ (1@ = +0)ms? (1
dQ — l aoq )
which has the bounded solution for @ > 0

Q
Q)= Q1+ /séfl(s) ds.
0
Note that f;(0) = 0.25(uf —ug)?, ¢%(0) = £i(0)/(1+
d) and the entrainment in the mixing layer starts at
z =0 with the finite rate

Go = (ug —ug)/(1+4)%.

The dependence of the mean flow characteristics on
x can be restored from the quadrature formula

Q
/ ds
r= | ———
/ 2004(s)

The behaviour of the free surface H = H(x) depends
on the sign of the determinant

In subcritical flows (A; > 0) the total depth H(z)
increases and in supercritical flows (A; < 0) the
function H(z) decreases. The dependence of the
total depth and the boundaries of the mixing layer is
shown in Fig.1. The upper boundary of the mixing
layer reaches the free boundary at x = x1.

3.2, VELOCITY FIELD IN MIXING LAYER

The distribution of the mean quantities in the mixing
layer have been found above. We use the boundary
layer approximation to calculate the horizontal and
vertical velocity components u = u(xz,y), v = v(z,y)
as well as the root-mean-square velocity ¢ = q(z,y)
in the free turbulent flow [9]. For steady-state flows
the governing equations take the form (p = 1):

Uy + vy =0
uuy + vuy + 7 = —pk (5)
UGy + UGy + TUy = —€,



where the Reynolds stress 7 is expressed by the for-
mula

T=—04q, 0 =0gsgnuy. (6)

The hydrostatic assumption gives p*(z) = ¢gH(x)
and the dissipation rate e is based on the length
scale 1 and the mean turbulence level ¢ in the
mixing layer

¢ =pBqq/n, [ = const. (7)

Note also that sgnu, =sgn(ut —u~) in the mixing
layer. Outside the mixing layer u, =0 and, as con-
sequence, u=u"(z) for 0 <y < h™(z); u=ut(z)
for H(z) — h*(x) <y < H(z). The function v(z)
can be found in this region by the continuity equa-
tion from the boundary conditions v|y=p = 0 and
Vly=pr = uT H,.

Therefore, at the boundaries of the mixing layer the
velocities u(z,y) and v(z,y) are knownand ¢(z,y) =
0. Tt is required to construct a continuous solution
of (5) — (7) inside the mixing layer (A~ (2) < y <
H(z)— ht(z)).

Let uEIJ' > u, and the velocity profile be monotone
(uy > 0). Then we have o = 0. It is convenient
to use the variables x and v as independent vari-
ables (¢ is the stream function). In this variables (5)

becomes a semilinear system

Uy — 0qqy = —gHy/u
Ie — 0quy = —Bqq/(nu).

(8)

A solution of (8) is constructed for 0 <z < #q, ¢ <
P < 1/)6", where

ho
vy :—fu(O,y) dy = —hgug,
0
Hqo
Ui = [ u(0,y) dy = hiuf.

ho

The point A, at which two uniform layers with dif-
ferent velocities merge, corresponds to the origin of
coordinates on the (¢, z)-plane (Fig. 2). The bound-
aries of the mixing layer are represented by the curves
AB and AC. The solution u=u"(2), ¢=¢=0 is
known to the left of AB (region T). Similarly, the so-
lution of (8) has the form u = u™(z), ¢=¢=0 to
the right of AC (region TT).

Note that the curves AB and AC, which are given by
the functions ¢ = ¢~ (z) and ¢ = ¢ (z), respec-
tively, are the characteristics of (8)

dy® ()
dx

= +oq(z).

For the semilinear hyperbolic system (8) (q(z) > 0)
we have the Goursat problem, which can be solved by
the standard method of characteristics. If w™(x) >
Umin > 0 in region T (0 < = < x1) the estimate
u(2,%) > Umin > 0 holds in BAC for a monotone
velocity profile and the solution of (8) is bounded for
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Figure 2: (¢, z)-flow diagram
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Figure3: a) Non-dimensional horizontal velocity
(wu—u")/(ut —u~) versus y/H at x = z;. b) Non-
dimensional shear stress 7/7max versus y/H at z =
z1. The initial flow parameters are given in figure 1

(6=0, 3=18).

0 < # < 21. The behaviour of the solution near the
origin of coordinates is represented by a self — simi-
lar solution of (8) for pressure — gradient — free flows
(p% = 0), which can be found in an explicit form [11].
It is shown in [11] that the energy conservation law
(# = 0) may be applied to describe the large billow
evolution in mixing layers. In this case § = 1.8 gives
an appropriate velocity and turbulence distribution in
a self — similar mixing layer. Figure 3 shows the hori-
zontal velocity (a) and the Reynolds stress (b) distri-
bution in the mixing layer at the free surface (x = 21).

4. SURFACE JET
4.1. TWO-LAYER EQUATIONS

At 2z = z; we have the transition from the mixing
layer to a turbulent surface jet (Fig. 1). As was men-
tioned above, system (1) describes the jet evolution
with At = 0, ft = 0. For steady-state flow the



following relations are fulfilled
hmum4+Q=Q=Q"+Q (QT<Q")
0.5ut” + gH = J~ (9)
h=u=? 4 na® 4+ 0.5gH = F.

All unknown variables can be found from (9) as func-
tions of @ = nu. Eqgs (1) take the form

Q

=0
d oq

dg o (10)
0 )

Y _ 20 Q) — (1426

T (n@- ),

where the function f;(Q) = (u™ — u)? is calculated

from (9). Egs. (10) may be reduced to the linear

ODE
dq?

Q@ = f(Q) — (1 +2d)3%,
which has the solution
Q
Q) =7 (Q) +Q U [ 5% f(s) ds,
Q1

and the distribution of mean flow characteristics along
the channel is calculated from the dependence

Q
+/ ds
r==x
! o0q(s)

Q1

up to the position = = x5 where @Q = @Q (Fig.2).
Analogously to the mixing layer, the free surface of
the jet increases in subcritical flows (A; > 0) and
decreases in supercritical flows (A; < 0) where
gh™— gm
Ai=1—"— —=.
J u-2 a2
The development of the surface jet is shown in Fig.
1 for dimensionless variables. The surface jet reaches
the bottom at = = z4.

4.2. VELOCITY FIELD IN SURFACE JET

Egs. (5) — (7) describe also the velocity field in the
surface jet (21 < & < a9, h™(2) < y < H(z)). As
in the mixing layer, the flow at the lower boundary
y = h™(x) of the jet is known (v = u=(2), v =
—h~uy;, ¢ = 0). At the free boundary y = H(z)
we have ¢ = 0 together with the kinematic con-
dition. On the (x,v)-plane it gives the following
initial-boundary problem for (8):

(U,(])|BC = (u(z1,y),q(x1,y)), h™(z) <y < H(z1)

(u’q)|BE = (u_(x),O), T <z < T, Q|CG:0' (11)

The problem (5) — (7), (11) can be solved by the

method of characteristics too.
5. CONCLUSIONS

The model of the two-dimensional turbulent layer evo-
lution at free and rigid boundaries is considered. The
model is applied here to the problem on interaction
of the mixing layer with a free surface, but it can be
used for a wide class of turbulent flows in open and
closed channels with different sources of turbulence
(breaking waves, floating and submerged bodies, to-
pography etc.) The buoyancy effects due to the upper
layer aeration may be incorporated in the model in a
natural way. We hope that the two-level description
of turbulent flow in the channels of finite depth may
be useful for the more complicated cases such as sur-
face or internal hydraulic jumps and bores with a zone
of reverse flow at the fronts of them.
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