
Second Order Spectral Simulation

of Directional Wave Generation and Propagation in a 3D Tank�

David Le Touz�e, F�elicien Bonnefoy & Pierre Ferrant

Division Hydrodynamique Navale/LMF, Ecole Centrale de Nantes, B.P. 92101, F-44321 Nantes Cedex 3, France

e-mail : pierre.ferrant@ec-nantes.fr

Abstract

This paper is devoted to the time accurate simulation of the generation and propagation of waves
generated by a segmented wave maker in a 3D tank. The ow is described in the framework of potential
theory, with second order Stokes expansion of nonlinear boundary conditions on the free surface and on the
wave maker. The resulting initial boundary value problem is solved using a recently developed spectral
formulation. The basic principles of the numerical scheme are �rst presented. Then, some illustrative
results on the generation of oblique waves in the new ECN o�shore wave tank are given, comparing the
standard snake's principle, and Dalrymple's method. The objective of this research is to investigate both
in time and in space the usable test area in a our multi-directional wave tank, for given required sea states.

Introduction

Unlike other methods more commonly used in hydrodynamics such as the BEM, the spectral method
is a global method in which the solution is expressed in terms of basis functions de�ned in the whole
physical domain. When basis functions are orthogonal, the convergence of the solution is faster than any
integer power of the number of unknowns, a behavior usually referred to as 'spectral convergence'. The
counterpart of this very interesting characteristic is mainly found in the limitation to simple geometrical
domains in which the set of basis functions is de�ned. Among others, examples of spectral methods
applied to free surface ows include Dommermuth & Yue (1987) and Chern et al (1999). In applications
to inviscid free surface ows, it is possible for certain geometries to �nd a set of orthogonal basis functions
satisfying Laplace's equations, so that the coeÆcients of the spectral expansion are determined through
boundary conditions only. In this spirit, some results concerning non linear sloshing in �xed or moving
2D and 3D tanks were presented at the previous workshop (Ferrant & 2001). The interaction of 2D
nonlinear waves modeled by a non linear spectral formulation, with a 3D structure was further presented
in Ferrant, Le Touz�e & Pelletier (2001). Agnon & Bingham (1999) proposed a method to eliminate the
limitation to �xed boundaries, by introducing the concept of an additional potential satisfying the non-
homogeneous boundary conditions, while modi�ed free surface conditions are accounted for by the usual
spectral expansion. They solved the 2D linearized wave generation problem with an explicit analytical
expression for the additional potential limited to the case of a piston wave maker.
In the present paper, this superposition scheme is extended to three dimensions and to arbitrary segmented
wave maker con�gurations, with the additional potential represented by a spectral expansion as well, while
boundary conditions on the free surface and on the wave maker are modeled up to second order with respect
to the wave steepness and to the wave maker excursion respectively.
This numerical tool is intended to be used for modeling the wave generation and propagation processes in
the new ECN o�shore wave basin (50mx30mx5m) , equipped with a 48-ap wave maker on one of the 30m
sides. Existing theoretical frames for determining paddle motions include the simple snake's principle �rst
formulated by Biesel (1954) and Dalrymple's theory (1989) in which reections on lateral boundaries are
accounted for to obtain the prescribed wave amplitude at a given distance in the basin. More elaborated
methods allow the wave amplitude to be optimized over a certain area in the basin, see Boudet & P�erois
(2001). However, all these models are based on �rst order frequency domain theory. With the present
model, we will be able to obtain new and valuable indications on the behaviour of the wave tank.

Linear Spectral Modelization

In this section, we consider a three-dimensional tank of water depth h, width Ly and length Lx,
partially �lled with an inviscid uid. Under the potential-ow theory assumption, the governing equation
for the unknown velocity potential �(M(x; y; z); t) in the whole uid domain D is Laplace's equation:

��(M; t) = 0 ; (M 2 D) (1)
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On the tank right & side walls and bottom, the potential � has to satisfy homogeneous Neumann
conditions ; and on the left wall, the following linearized Neumann condition :

@�

@x
(M; t) = Uwm(y; z; t) ; (x = 0) (2)

where Uwm(y; z; t) is the instantaneous velocity of the wavemaker.
Initially the uid is at rest. We also suppose the free surface to be single-valued and represented at

every time by z = �(x; y; t). Thus, the linearized nondimensional kinematic and dynamic conditions at
the free surface are formulated as follows:

@�

@t
(M; t) =

@�

@z
; (z = 0) (3)

@�

@t
(M; t) = �� � �(x)� ; (z = 0) (4)

where �(x) is a damping coeÆcient used to avoid reections on the right wall of the tank.
Since, we are willing to expand the potential � in series of natural modes of the tank, we are a priori

limited to a geometry �xed in time, whereas we want to have a wavemaker on the left wall of the tank.
To get rid of that limitation we will here do the superposition of two potentials, which was �rst proposed
by [4] :

�(M; t) = �tank(M; t) + �wm(M; t) ; (M 2 D) (5)

where �tank is the spectral potential in the �xed-geometry tank with its free surface, and �wm an additional
potential accounting for the wavemaker but not the free surface, and that is further described hereafter.
Therefore, �tank satis�es the equations (1), (3) & (4), and homogeneous Neumann conditions on the tank
walls and bottom ; and �wm satis�es the equations (1) & (2), and homogeneous Neumann conditions
on the tank right wall and bottom. By solving �rst the wavemaker contribution, we obtain free surface
forcing terms quantities allowing us to solve for the �xed-tank part of the potential.

In order to preserve the accuracy and exponential-convergence properties of our spectral method, we
found it interesting to describe also the additional potential through a spectral formulation. We apply
therefore the same kind of spectral resolution to our wavemaker boundary value problem as to the �xed-
geometry tank boundary value problem. Thus, the two spectral potentials can be expressed as such
:

�tank(M; t) =

Nx�tankX
m=0

Ny�tankX
n=0

amn(t) cos(
��!
kmn:

�!x )
cosh(kmn(z + 1))

cosh(kmn)
; (M 2 D) (6)

�wm(M; t) =

Nx�wmX
M=0

Ny�wmX
N=0

AMN (t) cos(
���!
KMN :

�!z )
cosh(KMN (�x+ 4))

cosh(4KMN )
; (M 2 Dwm) (7)

where
��!
kmn = (m�=Lx; n�=Ly) &

���!
KMN = ((2M � 1)�=4; N�=Ly) and �!x = (x; y) & �!z = (z + 1; y);

N�tank = N�xtank � N�ytank and N�wm = N�xwm � N�ywm are the numbers of modes kept. Due to the
symmetry on the wavemaker, only the odd modes are kept in �wm.

Numerical Resolution

In the two preceding boundary value problems, the only unknowns are the so-called "modal time am-
plitudes" amn(t) & AMN (t), and the free-surface elevation �. In both problems, the spectral formulations
(6) & (7) satisfy intrinsically Laplace's equation (1) and homogeneous Neumann conditions.

In the wavemaker boundary value problem (equations (1) & (2) in Dwm) that we solve �rst, we
discretize the Neumann condition (2) on the wavemaker (x = 0) at N�wm nodes. Then, we do the same
at N�tank collocation nodes of the free surface (z = 0) for the �xed-tank boundary value problem.

To update these unknowns, we use a 4th-order Runge-Kutta time-marching scheme. The knowledge
of the AMN - & amn-unknowns at t + �t requires the resolution of two square linear systems. For the
wavemaker part, the N2

�wm
system is assembled from the wavemaker condition (2) taken at the N�wm dis-

cretization nodes. The system is solved through a LU-decomposition since the matrix is time-independent.
For the �xed-tank part then, using the forcing terms quantities obtained from �wm, we assemble a N

2

�tank

square linear system from the free-surface dynamic condition (4) taken at the N�tank free-surface colloca-
tion nodes. The hyperbolic cosine terms vanishing at (z = 0) in the expression of �tank (6), this second
linear system is solved by means of Fast Cosine Fourier Transforms.



Second-Order Modelization

At the second-order, the potential is the sum of a �rst-order potential �1 = �1tank + �1wm, computed
as explained in the preceding section, and a second-order potential �2. The same way the other unknown,
the free-surface elevation, is decomposed into the sum of two components : � = �1 + �2. The second-
order potential satis�es homogeneous Neumann conditions on the tank side & right walls and bottom ; in
addition, the two unknwons �2 & �2 verify the following set of equations:

��2(M; t) = 0 ; (M 2 D) (8)
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(M; t) = �Xwm(y; z; t) �
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; (x = 0) (9)
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� �(x)�2 ; (z = 0) (11)

In order to solve this set of equations, we do the same superposition as for the �rst order:

�2(M; t) = �2tank(M; t) + �2wm(M; t) ; (M 2 D) (12)

Thus, we also have to solve �rst an additional boundary value problem (equations (8), (9) and homogeneous
Neumann conditions) to obtain �2wm, and then the �xed-tank boundary value problem (equations (8),
(10), (11) and homogeneous Neumann conditions) to get �2tank and �2.

Some preliminary results

Our second order spectral model has been run for modeling the generation of oblique regular waves in
ECN's wave tank. The wave period is T=1.8 s, and waves propagate at an angle of 20 degrees from the
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Figure 1: Steady state �rst order wave amplitudes. Left: Snake's principle. Right: Dalrymple's method

main axis. Both the snake's principle and Dalrymple's method have been tested. In �gure 1, we compare
the steady state �rst order wave amplitudes obtained in the tank. These plots have been obtained by
applying a moving window Fourier analysis to the unsteady wave amplitude. These results agree with those
obtained with a frequency domain �rst order theory, and illustrate the wider usable zone obtained with
Dalrymple's method. This is con�rmed by �gure 2, giving 3D views of the linear wave �elds, observed at
t=19T. In �gure 3, we give time series of �rst and second order wave elevations observed at x=17.5m from
the wave maker, in the vertical plane of symmetry of the tank, for both types of wave maker control.The
second order signal appears to reach a regular steady-state quicker with Dalrymple's control than with
the snake's method. This behavior will be further analysed with comments presented at the workshop.



t = 19T t = 19T

Figure 2: 3D Linear wave �elds, t=19T. Left:Snake's principle. Right: Dalrymple's method

Conclusion

A new spectral formulation for the simulation of the generation and propagation of multi-directional
waves in a 3D tank has been presented.

The method exhibits the usual per-
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Figure 3: Time series of �rst- and second-order water elevations at
(x = 0:35 � Lx, y = 0:5 � Ly) (top: Dalrymple, bottom: snake)

formances of spectral schemes, with
respect to accuracy and rate of con-
vergence. The e�ectiveness of the model
is illustrated by simulating the gener-
ation and propagation of directional
waves by a snake wave maker in a
3D tank, using di�erent types of wave
maker motion. Future work in this di-
rection includes a better approxima-
tion of the physical absorbing beach
by the absorbing layer used in the nu-
merical model, and a thorough inves-
tigation of the actual usable areas in
the tank, with respect to objective sea
states.
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Discusser : 
 Bernard Molin 
Questions / Comments :  
 
I wonder which damping condition you apply to the second-order waves at the far end 
of the tank. As the wavemaker is switched on, a long wave is generated, which is 

second-order in the wave amplitude and which propagates at celerity gh . Another 
long wave travels together with the wave front. In physical basins, traditional beaches 
are totally ineffective in absorbing these long waves. In my opinion, when first and 
second-order wave fields are separated, it is more correct to apply no absorbing 
condition at all to the second-order waves : long waves get reflected ; as for the 
double frequency free waves, it takes them a long time to reach the far end of the 
tank, so it is not really a problem that they get reflected. 
 
 
Author’s Reply : 
(If Available) 

 

 
Since our aim is actually more to reproduce more precisely what happens in a 
physical wavetank, such as our new ECN facility, rather than perfectly absorb the 
wave train, this remark appeared very interesting to us. Indeed, implemented as was, a 
second-order absorption was effective. Thus, in order to verify its impact on the 
second-order long waves described above, we run a case with and without this 
absorption being active, and we then compared. It appeared to be easier for us to look 

to the long and fast wave mentioned in the comment, of theoretical celerity gh  and 
that propagates ahead of the wavefront, since it propagates alone, rather than the one 
propagating behind along with the wavefront. 
We chose to do a simple 2D regular-wave simulation in a numerical tank similar to 
our physical one (the one used (and described) in the paper as well, but in 3D), where 
a parabolic absorbing zone applies from 0.8Lx/h to Lx, at first order in both cases and 
at second-order in one case. Please refer to the paper itself for the domain dimensions 
and the description of the numerical absorption implementation.  
The wave generated has a nondimensional pulsation of 2.5. The figure below shows 
the second-order water elevation at a probe located at the start of the absorbing zone 
(x/h=0.8Lx/h) in the two cases. The bottom plot is a zoom of the top one in the time 

area where the gh -celerity long wave is forecasted to reach the probe, first on its 
incoming way (first dashed vertical line), and then on its way back after reflection 
(second dashed vertical line). One can first notice that the time when the long wave 
first reaches the probe actually matches the theory.  Second, the comparison clearly 
shows that having a second-order absorption actually damps this long wave. 
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Therefore, provided that one works with times prior to the reflected double frequency 
free waves reaching the usable area of the basin, removing our second-order 
absorption condition actually leads to a closer reproducing of the physical wave tank 
generation and propagation process. 
Finally, it shall be mentioned that substantial advances have been made since the time 
when the paper in the proceedings was written (where figure 3 is not correct, by the 
way). For further results and analysis, please refer to the proceedings of the ISOPE 
2002 Conference to be held in Japan early June. 
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