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INTRODUCTION

In previousWorkshopsFontaineet al. (2000),Landriniet al.
(2001a),a gridlessLagrangianmethodto simulatebreaking
andfragmentationin free-surficeflows hasbeendeveloped
startingfrom the SPHmethod introducedoy Monagharand
co-authorgseee.g. Monaghan(1988)).

The resulting algorithm featuresseveral improvements
in thetreatmentbf boundaryconditions,andin stability and
efficiency properties.Verificationandvalidationof the code
have beenperformedby comparisonwith other numerical
solutionsand experimentaldata (seee.g. Colicchio et al.
(2002)).

The method has been successfullyapplied to study
breakingwavesin shallov waterandaroundshipsby Tulin
andLandrini (2000).In particular the structureof the break-
ing wave patternaroundslendershipshasbeenhighlighted
by combininga 2D+t approximatiorto the steadyflow with
the SPH method(Landrini et al. 2001a,2001b). In both
casesgyclical splashup hasbeenobsened, with formation
of vortical structuresandcavities entrappingair, asconfirmed
by experimentabbsenations.

Thelong-termevolution of suchstructuresanbe influ-
encedby the entrappedhir, evolving into a bubbly mixture
with peculiarphysicalproperties. The fate of suchaerated
regionsis relevantto oxygenatiorprocessesf oceansdiffu-
sionof pollutants,aswell asto radarandacousticsignatures
of ships. Finally, impactloadsare largely affectedby air-
cushioningeffects,asthoseobsenedin sloshingflows Faltin-
sen(2001).In this papemwe describeour morerecentactivity
aimedto extendthe SPHformulationto multi-phaselows.

SPH-basedpproacheso multi-phaseflows have been
alreadyproposedn theliterature. Theformulationpresented
in Monaghan(1996),Monagharet al. (1999)is suitablefor
densityratios of order 0(0.5) betweenthe two fluids. Un-
physicalsurfacetensioneffectsof numericalorigin affectthis
approachCummins(1999). Moreover, for smallervaluesof
the densityratios, the methodis highly unstableandnot ap-
plicable. For a collection of particleshighly dispersedn a
fluid, Monaghanand Kocharyan(1995), Monaghan(1997)
adoptedcorrectiontermsin the fluid-flow equationgto take
into accounthe presencef the suspendegatrticles.

Here, we like to considerflows wherethe two phases
aredynamicallyinteractingthrougha sharpinterface andthe
two fields have to be describedhroughthe fluid-flow equa-
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tions,withoutary furtherapproximation Onthis ground,we
developeda new formulation,describedn the next section,
which overcomesll the mentioneddrawbacks. Preliminary
resultsfor a prototypeproblemarepresentedn thelastsec-
tion.

FORMULATION
Basic details of the SPH method The essentiafeaturesof
the SPH methodare i) the Lagrangiancharacter allowing
self-adaptabilityto large fluid-domaindeformationsandii)
the meshlesscharacteremoving the burden of building a
meshin acomputationatiomainof complex geometry
Thefluid is dividedinto a collectionof N particlesinter-
actingeachotherthroughevolution equationsof the general
form:
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Theinteractionterms 4, #; follow from the manipulation
of theequation®f massandmomenturrbalancdor aninvis-
cid fluid, respectiely, anddependon densityp;, velocity Jj
andpressureg; of theparticles.Thelastequationin (1) sim-
ply representthe Lagrangiarevolution of thei-th particle.
In the basicimplementation the interactionterms ﬁj
modelthe pressurdnteractionsand containthe pressurepy
which hereis determinedby the value of the density px
throughanequationof stateof theform

p(p) = B [(%)y—l] . @)

The parameterdB, po,y are chosento have maximumden-
sity oscillationsof order O(1%) of a referencevaluepg. In
practice,this is accomplishedy choosingthe soundspeed
¢s = dp/dp tentimesor more larger than the highestfluid
velocity expectedin the physicalproblem. We notethat the



useof theactualspeedf soundin waterwouldimply atime-
stepstoo smallfor ary practicaluse.

Upon consideringa weakly compressibldluid, we can
avoid the solution of the Poissonequationfor the pressure
andthe methoddoesnot requirethe solutionof analgebraic
problem. As a consequenceghe memoryoccupations pro-
portional to the numberof particles, and the efficiengy is
ratherhigh. Moreover, the particlescan be arbitrarily scat-
teredover thefluid domainleadingto a completelygrid-free
method.

Theinteractiontermscanbe computedndependentlyf

eachother Thereforethe methodis explicit andcanbe eas-
ily implementedon parallelcomputers.The resultingalgo-
rithm is ratherrobust, even for large free-surbicefragmen-
tation and folding, efficient, and relatively easy-to-codeat
leastin its mostnaive implementation.Modeling of no-slip
bodyboundaryconditionsandof turbulentflows arelessob-
vious. Finally, the stability of the methodrequiressomesub-
tleties. Someof theseissuesare discussedy Colagrossiet
al. (2001).
Multi-phase version of the SPH method We collect here,
themaindifferencedbetweerthe Monagharformulationand
thenew formulationhereintroduced.ThediscreteSPHequa-
tionsareobtainedby usingdiscreteapproximatiorto thein-
terpolationintegral

(u(%e)) = /Q URIW(Re — R dVE . (3)

In particular Monaghanadoptedthe following approxima-
tion to thefield andits gradient
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Hereandin thefollowing discreteapproximationsthekernel
functionW;; is evaluatedat the pointsX;, X;, andthe gradient
operatord is taken with respecto the variableX,. We note
thatdVj = m;/p;, thatis eachparticlecarriesaconstanmass
m; duringthe evolution. By usingtheidentities:
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we find the expressiongor the divergenceandgradientoper
ators:
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Monaghandiscretizedthe pressuregradientby using the

identity:
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andequationg4), to get
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which allows for aformulationlocally conserative.

As we will shaw, with theabove discretizatiorformulae
appliedto eachof thefluids forming the multi-phasesystem,
theresultingmethodexhibits somedrawbacks,asillustrated
in thefollowing. Here,we just notethatthesearerelatedto
the sharpchangeof the densityacrossthe interface. There-
fore,we proposedifferentformulationbasednthediscrete
approximations
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Thedivergenceandgradientoperatorsiow read:
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which avoid the useof the gradientof the density The main
differencebetween(10) and Monaghans (6) is the use of
m;/p;j insteadof m;/p;, which becomescrucial for small
densityratios. With the samemotivations,the pressuregra-
dientis now computedoy

Opi = 3 (pj + p)OW;idVj, (11)
]

whichis still locally consenrative.

A seconddistinctive featureof the presenimplementa-
tion is relatedto the Monaghans velocity correction,the so
calledXSPH formulation. This correctiontakesinto account
neighborsvelocity througha meanvelocity evaluatedwithin
theparticlesupportj.e.
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For particlesi closeto thetwo-fluidsinterfacethe meanden-
sity pij is wrongly evaluatedandthe XSPH correctionleads
to wrong results. In our implementationwhen considering
onemedium,the XSPH correctionis computedwithout con-
sideringinfluenceof the othermediapossiblypresent.



A SAMPLE CASE

As a test case,we consideran initially circular bubble of
lighter fluid Y underneattthe interface, separatinghe two
phasesX andY, respectiely (cf. Fig. 1). A no-penetration
boundaryconditionis enforcedon the outer boundary In
the computationsthe symmetryhasbeenenforcedexplicitly
andonly half of thefluid domainwill beshovn. We alsonote
thatfor suchproblem,surfacetensionmay bephysicallyrel-
evant andthe presentresultsare mainly meantto shav the
capabilitiesof the presentformulation. Surfacetensioncan
be introducedas shovn by Morris (2000), or approximated
by modifying the equationof stateas suggestedy Nugent
(2000).Thelatterapproachs muchsimplerandalsoprovide
a simplemechanisnto control the numericalfragmentation
of the interface. This issuewill be further discussedat the
Workshop.
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Figure 1. Rise of a gas bubble through water. Sketch of the problem
and adopted nomenclature.

Figure2 (left) shovstheresultobtainedby thethe Mon-
aghanmodelfor the densityratio py /px = 0.5. Theinter
face shows large oscillationsand the whole evolution (not
reported)s affectedby anunphysicahumericalsurfaceten-
sion (asdiscussedy Cummins(1999)). In the right plot of
thesamefigure,we reportthedomainconfigurationobtained
by thenew formulation. Apparently theinterfaceis smoother
andthe following evolution is confirmedby referencesolu-
tionsobtainedby aNavier-Stokescodewith Level Setto cap-
turetheinterface(solidline in theright plot).

For a smallerdensityratio, Fig. 3 left, py/px = 0.1, a
stronginstability appearsoonwhich preventsthe computa-
tion to proceedascanbe arguedby the highly irregular ve-
locity field in proximity of the bubble. The presenimproved
formulation, right plot, doesnot exhibit suchbehaior and
the computatiorcanbe arbitrarily prolongedn time.

As a last result, we shav the more stringent case
py/px = 0.001, Fig. 4. Time increasedrom left to right
andfrom top to bottom(t1/9/R=1.897,2.530,3.162,3.795,
4.427,5.060,5.692,6.325). The presentsolutionis com-
paredwith a viscoussolution obtainedby using a level-set
techniqueto capturethe interfacebetweerthe two fluids. In
the heavier fluid, the SPH particlesare coloredaccordingto
theirinitial verticalcoordinategiving a simpleandeffective

representatioof their motion.

As time increasesthe bubble deformsandrises, push-
ing up the interfaceandforming a centralhump. The thick-
nessof the bubble nearthe line of symmetrygraduallydi-
minishes. Eventually the bubble splits in two parts, and
two counterrotatingvorticesarecreatedinducinganupward
motion of waterfrom the bottomof thetank. The separation
distancebetweerthe two structuresslightly increaseswhile
thecentralhumpmovesdownwardundertherestoringaction
of gravity. In the SPHsimulation,the air bubblebreaksand
someair escapesipwards. The agreemenbetweenthe two
solutionsis reasonableat leastat the beginning of the evo-
lution. Later stagesare characterizedy more pronounced
differencesthoughthe solutionsremainqualitatively similar.

Usingthenew SPHmodel,we like to investigateahethe
influenceof the air on the breakingandpost-breakingvolu-
tion of waterwaves. New resultson this issuewill be pre-
sentedat the Workshop.
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Figure 2. Left: standard SPH solution; right: improved model.
py/px = 0.5, t\ﬂg/R) = 4.427. The solid lines in the right plot
represent a Navier-Stokes solution based on the Level-Set algorithm
for capturing the interface.
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