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INTRODUCTION
In previousWorkshops,Fontaineetal. (2000),Landrinietal.
(2001a),a gridlessLagrangianmethodto simulatebreaking
andfragmentationin free-surfaceflows hasbeendeveloped
startingfrom theSPHmethod,introducedby Monaghanand
co-authors(seee.g. Monaghan(1988)).

The resultingalgorithm featuresseveral improvements
in thetreatmentof boundaryconditions,andin stability and
efficiency properties.Verificationandvalidationof thecode
have beenperformedby comparisonwith other numerical
solutionsand experimentaldata (seee.g. Colicchio et al.
(2002)).

The method has been successfullyapplied to study
breakingwavesin shallow waterandaroundshipsby Tulin
andLandrini (2000).In particular, thestructureof thebreak-
ing wave patternaroundslendershipshasbeenhighlighted
by combininga 2D+t approximationto thesteadyflow with
the SPH method(Landrini et al. 2001a,2001b). In both
cases,cyclical splashup hasbeenobserved,with formation
of vorticalstructuresandcavitiesentrappingair, asconfirmed
by experimentalobservations.

Thelong-termevolution of suchstructurescanbe influ-
encedby the entrappedair, evolving into a bubbly mixture
with peculiarphysicalproperties. The fateof suchaerated
regionsis relevantto oxygenationprocessesof oceans,diffu-
sionof pollutants,aswell asto radarandacousticsignatures
of ships. Finally, impact loadsare largely affectedby air-
cushioningeffects,asthoseobservedin sloshingflowsFaltin-
sen(2001).In thispaperwedescribeourmorerecentactivity
aimedto extendtheSPHformulationto multi-phaseflows.

SPH-basedapproachesto multi-phaseflows have been
alreadyproposedin theliterature.Theformulationpresented
in Monaghan(1996),Monaghanet al. (1999)is suitablefor
densityratiosof order

���
0 � 5� betweenthe two fluids. Un-

physicalsurfacetensioneffectsof numericalorigin affectthis
approachCummins(1999). Moreover, for smallervaluesof
thedensityratios,themethodis highly unstableandnot ap-
plicable. For a collectionof particleshighly dispersedin a
fluid, Monaghanand Kocharyan(1995), Monaghan(1997)
adoptedcorrectiontermsin the fluid-flow equationsto take
into accountthepresenceof thesuspendedparticles.

Here, we like to considerflows wherethe two phases
aredynamicallyinteractingthroughasharpinterface,andthe
two fields have to be describedthroughthe fluid-flow equa-

tions,withoutany furtherapproximation.Onthisground,we
developeda new formulation,describedin the next section,
which overcomesall thementioneddrawbacks.Preliminary
resultsfor a prototypeproblemarepresentedin the lastsec-
tion.

FORMULATION
Basic details of the SPH method The essentialfeaturesof
the SPH methodare i) the Lagrangiancharacter, allowing
self-adaptabilityto large fluid-domaindeformations,andii)
the meshlesscharacterremoving the burden of building a
meshin a computationaldomainof complex geometry.

Thefluid is dividedinto acollectionof N particlesinter-
actingeachotherthroughevolution equationsof thegeneral
form:
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Theinteractionterms
�

i j ,
�

i j follow from themanipulation
of theequationsof massandmomentumbalancefor aninvis-
cid fluid, respectively, anddependon densityρ j , velocity 
u j

andpressurep j of theparticles.Thelastequationin (1) sim-
ply representstheLagrangianevolutionof the i-th particle.

In the basic implementation,the interactionterms 
� i j

model the pressureinteractionsandcontainthe pressurepk

which here is determinedby the value of the density ρk

throughanequationof stateof theform

p
�
ρ � � B

���
ρ
ρ0 � γ � 1��� (2)

The parametersB 	 ρ0 	 γ are chosento have maximumden-
sity oscillationsof order

���
1%� of a referencevalueρ0. In

practice,this is accomplishedby choosingthe soundspeed
cs � dp� dρ ten timesor more larger than the highestfluid
velocity expectedin thephysicalproblem. We notethat the



useof theactualspeedof soundin waterwould imply atime-
stepstoo smallfor any practicaluse.

Upon consideringa weakly compressiblefluid, we can
avoid the solution of the Poissonequationfor the pressure
andthemethoddoesnot requirethesolutionof analgebraic
problem. As a consequence,thememoryoccupationis pro-
portional to the numberof particles,and the efficiency is
ratherhigh. Moreover, the particlescanbe arbitrarily scat-
teredover thefluid domainleadingto a completelygrid-free
method.

Theinteractiontermscanbecomputedindependentlyof
eachother. Therefore,themethodis explicit andcanbeeas-
ily implementedon parallelcomputers.The resultingalgo-
rithm is ratherrobust, even for large free-surfacefragmen-
tation and folding, efficient, and relatively easy-to-codeat
leastin its mostnaive implementation.Modelingof no-slip
bodyboundaryconditionsandof turbulentflowsarelessob-
vious.Finally, thestability of themethodrequiressomesub-
tleties. Someof theseissuesarediscussedby Colagrossiet
al. (2001).
Multi-phase version of the SPH method We collect here,
themaindifferencesbetweentheMonaghanformulationand
thenew formulationhereintroduced.ThediscreteSPHequa-
tionsareobtainedby usingdiscreteapproximationto thein-
terpolationintegral
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u
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u
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x� ;h� dV ��� (3)

In particular, Monaghanadoptedthe following approxima-
tion to thefield andits gradient� 
ui ��� ∑

j

u j Wj i dVj 	 �

∇ 
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u j � ∇Wj i dVj � (4)

Hereandin thefollowing discreteapproximations,thekernel
functionWj i is evaluatedat thepoints 
xi , 
x j , andthegradient
operator∇ is taken with respectto the variable 
xi . We note
thatdVj � mj � ρ j , thatiseachparticlecarriesaconstantmass
mj duringtheevolution. By usingtheidentities:
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wefind theexpressionsfor thedivergenceandgradientoper-
ators:
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Monaghandiscretizedthe pressuregradient by using the

identity:

σ : � 1
ρ

∇p � ∇
�
σp� � p∇σ

σ �%$ ∇ & p
ρ '  p

∇ρ
ρ2 ( ρ

(7)
andequations(4), to get
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whichallows for a formulationlocally conservative.
As we will show, with theabovediscretizationformulae

appliedto eachof thefluids forming themulti-phasesystem,
theresultingmethodexhibits somedrawbacks,asillustrated
in thefollowing. Here,we just notethat thesearerelatedto
the sharpchangeof the densityacrossthe interface. There-
fore,weproposeadifferentformulationbasedonthediscrete
approximations
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Thedivergenceandgradientoperatorsnow read:
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which avoid theuseof thegradientof thedensity. Themain
differencebetween(10) and Monaghan’s (6) is the useof
mj � ρ j insteadof mj � ρi , which becomescrucial for small
densityratios. With the samemotivations,the pressuregra-
dientis now computedby

∇pi � ∑
j

�
p j  pi � ∇Wj i dVj 	 (11)

which is still locally conservative.
A seconddistinctive featureof thepresentimplementa-

tion is relatedto the Monaghan’s velocity correction,the so
calledXSPHformulation.This correctiontakesinto account
neighborsvelocity througha meanvelocity evaluatedwithin
theparticlesupport,i.e.
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2
�

For particlesi closeto thetwo-fluidsinterfacethemeanden-
sity ρ̄i j is wrongly evaluatedandthe XSPHcorrectionleads
to wrong results. In our implementation,whenconsidering
onemedium,theXSPHcorrectionis computedwithout con-
sideringinfluenceof theothermediapossiblypresent.



A SAMPLE CASE
As a test case,we consideran initially circular bubble of
lighter fluid Y underneaththe interface,separatingthe two
phasesX andY, respectively (cf. Fig. 1). A no-penetration
boundarycondition is enforcedon the outer boundary. In
thecomputations,thesymmetryhasbeenenforcedexplicitly
andonly half of thefluid domainwill beshown. Wealsonote
thatfor suchproblem,surfacetensionmaybephysicallyrel-
evant and the presentresultsaremainly meantto show the
capabilitiesof the presentformulation. Surfacetensioncan
be introducedasshown by Morris (2000),or approximated
by modifying the equationof stateassuggestedby Nugent
(2000).Thelatterapproachis muchsimplerandalsoprovide
a simplemechanismto control the numericalfragmentation
of the interface. This issuewill be further discussedat the
Workshop.
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Figure 1. Rise of a gas bubble through water. Sketch of the problem

and adopted nomenclature.

Figure2 (left) showstheresultobtainedby thetheMon-
aghanmodel for the densityratio ρY � ρX � 0 � 5. The inter-
faceshows large oscillationsand the whole evolution (not
reported)is affectedby anunphysicalnumericalsurfaceten-
sion (asdiscussedby Cummins(1999)). In the right plot of
thesamefigure,wereportthedomainconfigurationobtained
by thenew formulation.Apparently, theinterfaceis smoother
andthe following evolution is confirmedby referencesolu-
tionsobtainedby aNavier-Stokescodewith LevelSetto cap-
turetheinterface(solid line in theright plot).

For a smallerdensityratio, Fig. 3 left, ρY � ρX � 0 � 1, a
stronginstability appearssoonwhich preventsthecomputa-
tion to proceed,ascanbearguedby thehighly irregularve-
locity field in proximity of thebubble.Thepresentimproved
formulation, right plot, doesnot exhibit suchbehavior and
thecomputationcanbearbitrarily prolongedin time.

As a last result, we show the more stringent case
ρY � ρX � 0 � 001, Fig. 4. Time increasesfrom left to right
andfrom topto bottom(t * g� R � 1.897,2.530,3.162,3.795,
4.427, 5.060, 5.692, 6.325). The presentsolution is com-
paredwith a viscoussolution obtainedby usinga level-set
techniqueto capturethe interfacebetweenthetwo fluids. In
theheavier fluid, theSPHparticlesarecoloredaccordingto
their initial verticalcoordinate,giving a simpleandeffective

representationof theirmotion.
As time increases,the bubbledeformsandrises,push-

ing up the interfaceandforming a centralhump. Thethick-
nessof the bubble nearthe line of symmetrygraduallydi-
minishes. Eventually, the bubble splits in two parts, and
two counter-rotatingvorticesarecreated,inducinganupward
motionof waterfrom thebottomof thetank. Theseparation
distancebetweenthetwo structuresslightly increases,while
thecentralhumpmovesdownwardundertherestoringaction
of gravity. In theSPHsimulation,theair bubblebreaksand
someair escapesupwards. The agreementbetweenthe two
solutionsis reasonable,at leastat the beginningof the evo-
lution. Later stagesarecharacterizedby more pronounced
differences,thoughthesolutionsremainqualitatively similar.

Usingthenew SPHmodel,we like to investigatethethe
influenceof theair on thebreakingandpost-breakingevolu-
tion of waterwaves. New resultson this issuewill be pre-
sentedat theWorkshop.
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Figure 2. Left: standard SPH solution; right: improved model.

ρY + ρX , 0 - 5, t . / g + R0 , 4 - 427. The solid lines in the right plot

represent a Navier-Stokes solution based on the Level-Set algorithm

for capturing the interface.
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Figure 4. Evolution of an air bubble (ρY + ρX , 0 - 001). The SPH

solution is compared with a Navier-Stokes solution by Level-Set tech-

nique for interface capturing (solid lines).
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