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ABSTRACT

Spatially dense measurements are carried out for the free-
surface elevation around four truncated circular cylinders
equally spaced along a straight line. At each of three wave-
lengths selected after preliminary measurements, two dif-
ferent waves in amplitude are generated with wave steep-
ness H/λ set approximately to 1/50 and 1/20. Through
comparison with computed results, discussion is made on
the characteristics in the spatial distribution of the first-
and second-order waves and validity of the potential-flow
computations around near-trapping frequencies.

1. INTRODUCTION

Understanding hydrodynamic interactions among multi-
ple floating bodies is important in a study of column-
supported type very large floating structures. Recent nu-
merical computations predict very large free-surface eleva-
tion and wave forces due to hydrodynamic resonant phe-
nomena at some critical frequencies.

To confirm whether this is true, some experimental
measurements have been carried out using arrays of a num-
ber of elementary bodies placed at regular intervals. For
example, Kashiwagi & Yoshida [1] measured spatial varia-
tion of the wave elevation along the longitudinal centerline
of a structure which consists of 64 vertical circular cylin-
ders arranged in an array of 4 rows and 16 columns. On
the whole, good agreement was found between computed
and measured results. However, the measured wave ampli-
tudes were much smaller than the computed ones around
a critical frequency where the wave resonant phenomenon
was observed in an interior region of the array (which is
known at present as the near-trapping frequency). This
discrepancy was attributed vaguely to viscous effects or
nonlinear effects. To make clear these ambiguous points,
more thorough investigation is needed both in numerical
computations and experiments.

In the present paper, using a model composed of four
truncated circular cylinders which are equally spaced along
a straight line, the wave elevation around each cylin-
der is measured densely in space by traversing gradually
the positions of wave probes. Measured time histories
are Fourier analyzed, separating into quantities with the
first-harmonic (first-order) and second-harmonic (second-
order) of the wave frequency. Numerical computations cor-
responding to the experiments are also performed. With
these results, discussion is made on the degree of agree-
ment in the first- and second-order wave elevations and on
their characteristics.

2. EXPERIMENTS

A model used in experiments consists of four vertical circu-
lar cylinders with horizontal base, as schematically shown
in Fig. 1. The radius, diameter, and draft of an elemen-
tary circular cylinder are denoted as a, D (=2a), and d,
respectively, and the separation distance between the axes
of adjacent cylinders is denoted as 2s. Then the tested
model was set as D = 165 mm, d = 2D, and s = D. The
whole model was rigidly fixed to a measuring carriage, with
the longitudinal line of the array (x-axis) set equal to the
longitudinal centerline of a wave tank.

x
z

y

s
s

2s

2s

 D

d

o

r j

r i

θ i

θ j

        
incident wave

 (β=0 deg, amplitude: A) (=2a)

Fig. 1 Coordinate system and notations

The incident waves in experiments are all plane pro-
gressive waves (the amplitude and the angle of attack are
denoted as A and β respectively), and measurements were
conducted in head waves, i.e. β = 0◦. To see nonlinear ef-
fects, two different amplitudes were set for each wavelength
such that the wave steepness (the ratio of wave height H
= 2A to wave length λ) was approximately equal to 1/50
and 1/20.

For spatially dense measurement of the wave elevation,
three units of the wave measuring apparatus were pre-
pared, each of which consists of five wave probes of ca-
pacitance type placed at regular intervals of 35 mm. By
traversing these measuring apparatus in the y-axis with
interval of 20 mm (only the outermost tip is separated by
25 mm), the wave elevation was measured at 305 positions
in total, the positions of which are shown in Fig. 2. In real-
ity, the measurements were carried out twice; the number
of measured positions in the first experiment is 225, which
are shown by closed circles (•) in Fig. 2. Since we realized
after data analyses that these 225 points were not enough
for spatial resolution of the wave pattern, additional 80
positions shown by open circles (◦) in Fig. 2 were chosen
for the second measurement. In addition to these measure-
ments around circular cylinders, the amplitude of incident
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Fig. 2 Measurement points for the wave elevation ( • 1st exp. ◦ 2nd exp. )

Fig. 3 Wave amplitude on the centerline

wave was measured at an intermediate position between
the tested model and the wave generator to minimize the
effect of reflected waves from the model.

Due to many measuring points, we had to limit the
number of frequencies of the incident wave. For that
purpose, preliminary measurements were conducted at
15 positions from the upwave side (using 3 units of the
wave measuring apparatus) on the centerline of the array,
by changing frequencies with nondimensional wavenumber
Ks (= ω2s/g) as a parameter. An example of prelimi-
nary measurements is shown in Fig. 3 for the first-order
wave amplitude; these are the results at two representa-
tive positions of (x, y) = (−8a, 0) and (0, 0). Computed
results based on the linear potential theory are also shown
in Fig. 3.

We can see good agreement between measured and com-
puted results, which implies reliability of the numerical
computation for the first-order boundary-value problem.
From these preliminary measurements, three wavenumbers
Ks = 0.8, 1.2, 1.5 (which correspond to the wavelength of
λ/2s = 3.93, 2.62, 2.09 respectively) were selected for mea-
suring the spatial distribution of the wave elevation.

Measured data were Fourier-analyzed, by taking ac-
count of up to the third harmonic of the wave frequency
3 ω. The duration of time in the Fourier analysis was de-
termined on the monitor screen by confirming no obvious
effects of reflected waves from side walls of the wave tank.
Since there are a great amount of data, only the first- and
second-order wave amplitudes will be shown in this paper
in nondimensional forms given by∣∣ζ(1)

∣∣ /A,
∣∣ζ(2)

∣∣ /KA2. (1)

3. THEORETICAL CALCULATION

With the usual potential-flow assumption, we introduce
the velocity potential Φ(x, y, z, t), satisfying Laplace’s
equation in the fluid. As shown in Fig. 1, Cartesian co-
ordinates � = (x, y, z) are used, with z pointing vertically
upwards.

The solution is assumed to be time-harmonic, so
that the time dependence can be factored out. In the
monochromatic wave case, if we assume the following per-
turbation series for the velocity potential

Φ = ε Φ(1)(�, t) + ε2Φ(2)(�, t) + · · · , (2)

the first- and second-order potentials, Φ(1) and Φ(2), will
have the following form:

Φ(1)(�, t) = Re
[
φ(1)(�) eiωt

]
, (3)

Φ(2)(�, t) = φ
(2)

(�) + Re
[
φ(2)(�) ei2ωt

]
. (4)

The second-order steady component, φ
(2)

in (4), will
not be treated in this paper, because we are interested
only in the periodic components.

Corresponding to the experiment condition, only the
diffraction problem is considered, so that the periodic com-
ponents are expressed as

φ(j)(�) = φ
(j)
I (�) + φ

(j)
S (�) , j = 1, 2, (5)

where φ
(j)
I (�) is the incident-wave velocity potential

(which will be explicitly given) and φ
(j)
S (�) is the scat-

tering potential to be obtained.
Substituting the perturbation series of (2) into the orig-

inal nonlinear boundary-value problem, we can obtain cor-
responding boundary-value problems for the velocity po-
tentials at different orders. The details of the derivation
are well known and thus we give only the final expressions
for the free-surface conditions at first and second order,
which are

∂φ(1)

∂z
− Kφ(1) = 0 , (6)

∂φ(2)

∂z
− 4Kφ(2) = Q(x, y) , (7)

where

Q = − iω

g

[
∇φ(1) · ∇φ(1) − 1

2
φ(1)

(
∂2φ(1)

∂z2
− K

∂φ(1)

∂z

)]
,

(8)
K = ω2/g is the infinite-depth wavenumber, g is the gravi-
tational acceleration, and these expressions are to be eval-
uated for z = 0. In addition, the velocity potential must
satisfy the condition of zero normal velocity on the body
surface.



Once the velocity potentials at each order are obtained,
it is straightforward to compute the free-surface elevation
from Bernoulli’s equation. The components at first and
second order are given as follows:

ζ(1) = − iω

g
φ(1) , (9)

ζ(2) = − i2ω

g
φ(2) − 1

4g
∇φ(1) · ∇φ(1) − K2

2g
φ(1)φ(1). (10)

These are to be evaluated for z = 0.
As the first step of the numerical calculation, the first-

order boundary-value problem must be solved, for which
Kagemoto & Yue’s [2] wave interaction theory is adopted
in combination with a quadratic isoparametric boundary-
element method for an elementary body of general geom-
etry [3].

A solution method for the second-order boundary-value
problem is more complicated, as described by Malenica et
al. [4] for a simpler case of four bottom-mounted circular
cylinders equally spaced around a circle. The basic idea
of the solution method considered in the present study is
similar to that in Malenica et al., but the solution does not
succeed at the present moment.

The wave elevation at second order, given by (10), con-
sists of two different contributions. Thus for convenience
in discussion, ζ(2) is expressed in the form

ζ(2) = ζ(22) + ζ(21), (11)

where
ζ(22) = − i2ω

g
φ(2), (12)

ζ(21) = − 1

4g
∇φ(1) · ∇φ(1) − K2

2g
φ(1)φ(1) (13)

are associated respectively with the second-order potential
and with quadratic products of the first-order quantities.
The latter is easy to compute, because the first-order so-
lution is semi-analytically given in the wave interaction
theory.

4. RESULTS AND DISCUSSION

Because of paucity of space, measured and computed re-
sults on the spatial distribution of free-surface elevation
will be shown only for the case of Ks = 1.2 which is close
to a near-trapping frequency. Other results will be pre-
sented at the Workshop.

Figure 4 shows the nondimensional amplitude of the
first-order wave elevation, with the upper figure for com-
puted results based on a linear potential theory, and the
middle and lower figures for measured results at wave
steepness of H/λ � 1/50 and 1/20, respectively. To
make it clear the spatial distribution, computed results are
shown for −10 ≤ x/a ≤ 10 and 0 ≤ y/a ≤ 3 which is wider
than the area in the measurements. The second-order re-
sults are shown in Fig 5 in the same manner. However
computed results are only for |ζ(21)|/KA2 in (11), that is,
quadratic products of the first-order quantities.

We can see that the first-order wave becomes large in
an interior region between cylinders, indicating that Ks =
1.2 is close to a near-trapping frequency of Neumann type
discussed by Maniar & Newman [5]. At this wavenumber,
computed results of |ζ(1)|/A seem to be in good agreement
with the results measured at H/λ � 1/20 rather than with
the results measured at H/λ � 1/50 in the linear regime,

especially for amplified waves between cylinders. However,
this is obviously not the case in the upwave region of the
upwavemost cylinder.

Regarding the results of second order, we can see at
first glance that the computed results for quadratic prod-
ucts of the first-order quantities, |ζ(21)|/KA2, are remark-
ably different from the total second-order wave amplitude
|ζ(2)|/KA2 obtained by the measurement. This fact im-
plies that the second-order component ζ(22) is similarly
large, but its phase relative to ζ(21) is such that the total
second-order wave elevation is not especially large around
the first-order near trapping frequency. In a region just be-
side each cylinder, |ζ(21)| is small whereas the total wave
amplitude |ζ(2)| is large, which means that the second-
order component ζ(22) is dominant in this region. We can
also observe a tendency from measured results that the to-
tal second-order wave amplitude becomes large in a region
where the first-order wave amplitude takes local maximum
or minimum, except for the runup on the upwave face of
the upwavemost cylinder.

Concerning the difference in the results measured at
H/λ � 1/50 and 1/20, the nondimensional value of
|ζ(2)|/KA2 is almost the same, which confirms validity of
the perturbation series of physical quantities in terms of
the maximum wave slope KA.

5. CONCLUSIONS

To have a clear understanding on the wave interactions
among multiple columns of an ocean structure, spatially
dense measurements have been carried out for the wave
elevation around an array of equally spaced four trun-
cated circular cylinders at various wave frequencies includ-
ing near-trapped modes. Numerical computations corre-
sponding to the experiments have also been performed.
With these results, discussion has been made on the de-
gree of agreement in the first-order wave elevation and on
nonlinear effects and their characteristics.

The results obtained in the present study can be sum-
marized as follows:

1)The overall agreement for the first-order wave elevation
is very good between computed and measured results.
Around the first-order near-trapping frequency, com-
puted results of |ζ(1)|/A seem to be supported by the
measured results in a steeper incident wave of H/λ �
1/20 rather than the results in a wave of H/λ � 1/50
appropriate for linear theories.

2)The amplitude of the second-order wave component
from quadratic products of the first-order quantities,
|ζ(21)|, has a similar spatial distribution to that in the
first-order wave amplitude; which is however markedly
different from the total second-order wave amplitude
|ζ(2)| obtained by the measurement. This implies that
another second-order component to be computed from
the second-order potential is also large, thereby cancel-
ing or dominating ζ(21). This cancellation seems to be
remarkable at Ks = 1.2 close to the first-order near-
trapping frequency.

3)Measured results show that the total second-order wave
amplitude |ζ(2)| becomes large in a region where the
first-order wave amplitude |ζ(1)| takes local maximum
or minimum, except for the runup on the upwave face
of the upwavemost cylinder.
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Fig. 4 Amplitude of the first-order wave elevation at Ks = 1.2 ( upper: computed by linear theory, middle:
measured at H/λ � 1/50, lower: measured at H/λ � 1/20 )
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Fig. 5 Amplitude of the second-order wave elevation at Ks = 1.2 ( upper: computed results for quadratic
products of the first-order quantities, middle: measured at H/λ � 1/50, lower: measured at
H/λ � 1/20 )
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