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SUMMARY

The two-dimensional problem of interface wave scattering by a thin elliptic arc submerged in the lower fluid
of the two superposed immiscible homogeneous infinite fluids is investigated here by assuming linear theory
by using hypersingular integral equation formulation. Very accurate numerical estimates for the reflection
coefficient are obtained and these are depicted graphically against the wave number for various configurations
of the elliptic arc and different parameters to illustrate the effect of the presence of the upper fluid. The
results for the special cases of a thin vertical plate, thin horizontal plate and circular plate submerged in
deep water are obtained and very good agreement with results available in the literature is seen to have been

achieved.
1. INTRODUCTION

The method of hypersingular integral equation has
been first utilized successfully by Parsons and Mar-
tin [1,2] to investigate water wave scattering problems
involving thin straight or curved barriers present in
deep water, the straight barrier may also be surface
piercing. Manadal et al[3] used this method to inves-
tigate interface wave scattering by a thin vertical bar-
rier submerged in the lower fluid of two superposed
immiscible homogeneous fluids. Here we investigate
a similar problem wherein an elliptic arc shaped thin
plate is present in the lower fluid. As in [2]1, the prob-
lem is formulated in terms of a hypersingular integral
equation on the discontinuity of the potential func-
tion across the curved plate. This equation is solved
approximately and the solution is utilized to obtain
very accurate numerical estimates for the reflection
and transmission coefficients.

2. FORMULATION

The y-axis is chosen vertically downwards into the
lower fluid and the plane y = 0 is the position of the
interface at rest, the lower fluid is of density p; and
occupies the region y > 0 while the upper fluid is of
density ps and occupies the region y < 0. A thin
curved plate ' in the form of the arc of an ellipse
with axes along the horizontal and vertical directions,
is fully submerged in the lower fluid, and any point
g = (z,y) on it has the parametric representation

z(t) = asinOt, y(t) =d—bcosOt
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where (asina,bcosa) and (asinf,bcosf) are the
two end points of I', 2a,2b being the lengths of the
axes. Under the assumption of linear theory and irro-
tational motion, and subpressing the time harmonic
factor e7*?7 a train of interface waves travelling from
the direction of £ = —oo can be represented by the
velocity potentials ¢3"“(z,y)(j = 1,2) where

0" () == (~1) el MUEME (= 1,9)

with M = 12K (K =0?/g,s = p2/p1). This train

of interface waves is incident on the plate I'. Let

¢j(z,y) denote the velocity potentials for the result-

ing motion in the two fluids (j = 1,2), then ¢;(z,y)

iatisfy the coupled boundary value problem described
y

V21 =0, y>0, Vi =0, y <0, (2.1)
1y = P2y, K1 + 1y = (K2 + ¢2y) ony =0,

(2.2)
¢$1n =0 on T (23)
r'/2V ¢, is bounded as r — 0 (2.4)

where r is the distance from the submerged edges of
r

)

V¢ - 0asy =00, Vo > 0asy — —oo (2.5)

and
. Tgb;-”c(a:,y) as x — 0o,
?3(@0) = { G (a,y) + R (~2,y) a5z - —oo
(2.6)



where T" and R are respectively the unknown trans-
mission and reflection coeflicients (complex) which
are to be determined.

3. SOLUTION

Proceeding as in [3], a hypesingular integral equation
formulation is now obtained. If f(q) denote the dis-
continuity of ¢; across I at the point ¢ = (z,y), then
#1(£,m)(n > 0) has the representation

1‘ y 6) )dsq
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(3.where the expression of G(z,y : £, 1) is given in
[3]. A representation of ¢2(£,n)(n < 0) in the upper
fluid in terms of f(g) can also be obtained, but this is
not given here. Use of the boundary condition (2.3)
leads to the hypersingular integral equation
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Writing € = asin Ou,n = d — bcos Ou,, and replacing
t,u by %(%‘B +t) and %(%‘B + u) respectively, the
equation (3.2) further reduces to the familiar form
! 1
—— + K(u,t)| F(t)dt =H -1 1
[ k| o = ., —1<u<
(3.3)

where F'(t) is related to f(g) and must be such that
F(£1) = 0, H(u) and K(u,t) are known bounded
functions.

To solve the equation (3.3),
as

F(t) is approximated

N
)23 " anUn(t)
n=0

where Up(t) is Chebyshev polynomial of the second
kind, and a,(n = 0,1,..N) are unknown complex
constants. Proceeding as in [3], a,(n = 0,1, ..N) sat-
isfy the linear system

F(t)=(1 (3.4)

N

Z“n H(uj) j=0,1,.. (3.5)
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h =
where u; = cos T

m (j =0,1,..N) are colloca-

tion points, and

1

Ap(u) = —7r(n—|—1)Un(u)+/ (1=K (u, t)U,, (t)dt,
-1
(3.6)
which can be evaluated numerically for v = u;.

The linear system (3.5) has been solved to find
an(n = 0,1,..N) numerically. Having found a,(n =
0,1,..N), R and T are now found by using the infin-
ity conditions (2.6), with z,y replaced by &, 7, in the
representation (3.1). This produces

iMO & M@ > .
Zl+s z::ansn,T—l ! Z Sy

(3 7)

1
sn:/ (1 = )20, (t)(bsin OF — ia.cos OF )
1

o= My(t)—iz(t) g

with ¢ = 1(25244), and S is the complex conjugate
of S,. Since the identity |R|> + |T|> = 1 holds good
always, this is utilized to check the correctness of the
numerical estimates for |R| and |T'| obtained by using

(3.7).
4. NUMERICAL RESULTS

The reflection and transmission coefficients |R| and
|T| are computed from (3.7) for various values of dif-
ferent parameters. In the approximation (3.4) twenty
terms are taken in most of the computations although
for many configurations of the elliptic arc, ten to fif-
teen terms are sufficient to produce an accuracy of
six decimal places. The identity |R|*> + |T|> = 1 is
always checked for any computation.

To ascertain that the present numerical scheme
indeed produces very accurate results, we choose
s =0,aa = 0,8 = ma/d = 0 to reproduce the re-
sults for a thin vertical plate submerged in deep wa-
ter obtained earlier by Evans[4]. Similarly choosing
s = 0,a = —n/2,8 = ©/2,b/d = 0, results for a
thin horizontal plate submerged in deep water are
obtained and these coincide with the results of [1].
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Fig.1:Reflection coeff. vs wave number,a/b=5,0=0 eta=180%,5=.2

The fig.1 depicts |R| against Kb for a half ellipse
(¢ = 0,8 = 7) with a/b = 0.5,s = 0.2 for different
values of depth (d/b = 0.1,0.2,0.3). It is observed

that |R| decreases as the depth increases, which is
plausible.
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Fig. 2: Reflection coefficient vs wave number,a/d =.2, b/d=.8, 0=0°
0 - estimated from Porter{5]

In fig.2 |R| is plotted against Kb for different arc
lengths (@ = 0, and g = Z,62% 7, 38 3597) i
the absence of the upper fluid (s=0) and for a/d =
0.2,b/d = 0.8. Tt is observed that as the arc length
increases, the overall value of |R| increases until the
arc assumes a half ellipse (8 = 7). As the arc length

further increases, |R| decreases rather slowly. When

it becomes almost a full ellipse (8 = 3597/180), the
results for |R| almost coincide with the results ob-
tained by Porter[5] for a submerged ellipse, depicted
in the same figure by circles, by using a different tech-
nique. It is interesting to note that for a/b = 1, the
almost full ellipse becomes an almost full circle and
there is practically no reflection for all wave numbers
as the corresponding curve for |R| suggests. In the
presence of the upper fluid almost similar qualita-
tive behaviour of |R| is observed, although the corre-
sponding curves for |R| are not depicted here. Thus,
even in the presence of an upper fluid, a circular cylin-
der submerged in the lower fluid experiences no re-
flection. Linton and Mclver [6] earlier confirmed this
when the upper fluid is of finite height and has a free
surface.
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Fig.3:Reflection coeff. vs wave number,a/d=2.,b/d=.1,0=-90%B=90°

In Fig. 3, |R| is depicted against Ka for a half
ellipse which is convex upwards (¢« = —7/2,8 =
w/2)for a/d =0.2,,b/d = 0.1 and s = 0,.3. This fig-
ure shows that the presence of the upper fluid quick-
ens the occurrence of the first zero of |R| (other than
Ka = 0) regarded as a function of Ka. Fig. 4
displays |R| against Ka for similar elliptic arc with
b/d = .1 and different a/d(2,4,6,8) and s = 0. As
a/d increases the first peak value of |R| increases. For
a/d = 4, the first peak value is unity near Ka = .5.
As a/d further increases, a lower peak arises between
the two higher peaks (unit values) of |R|. This type
of behaviour of |R| was also seen in the results of [2]
for circular arcs whose arc lengths are kept fixed but
radius is increased. In the presence of the upper fluid
(s # 0), similar qualitative behaviour of |R| for up-
ward convex half ellipse is observed, which is depicted



in fig. 5 for similar arcs with fixed a/d, but b/d = 1,0
and s = 0,.3. The case b/d = 0,s = 0 corresponds to
a horizontal thin plate submerged in deep water and
the curve for |R| for this configuration is compared

with [1], plotted in the same figure by cross marks.
Complete agreement is achieved.
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Fig.4: Reflection coefficent vs wave no., b/d=.1,0=90°,3=90°s=0
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Fig.5: Reflection coeff, vs wave number, a/d=10.,e=-90°3=90°
x - estimaated from Parsons and Martin[2]

CONCLUSION

The method of hypersingular integral equation is
employed to study the problem of interface wave scat-
tering by an elliptic arc shaped thin plate submerged

5.

in the lower fluid of two superposed fluids. The nu-
merical results are illustrated graphically. The effect
of the upper fluid reduces the overall effect of the re-
flection coefficient to some extent. In the absence of
the upper fluid, known results for a circular cylinder,
thin vertical and horizontal plates submerged in deep
water are produced.
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Discussion Sheet

Abstract Title : | Interface wave scattering by elliptic arc

(Or) Proceedings Paper No. : | 18 | Page : | 069
First Author : Kanoria, M

Discusser : Tatiana Khabkhpasheva

Questions / Comments :

As far as | know, in the diffraction problem of the circular cylinder under an interface
we can renormalize forces on the cylinder and the lengthscale in such a way, that the
data for the cylinder in a two-layer and in a one-layer fluid will be identical. I believe
that in your case it is also possible.

Author’s Reply :
(If Available)

Thank you for your suggestion, but what I feel is that if the data is identical then
there is no need of doing the same for the two-layered fluid
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Abstract Title : | Interface wave scattering by elliptic arc

(Or) Proceedings Paper No. : | 18 | Page : | 069
First Author : Kanoria, M

Discusser : Chris Linton

Questions / Comments :

In the paper cited by Linton & Mclver (1995), we included the effect of an upper free
surface and observed the exchange of energy between interfacial and free surface

modes.

Presumably, with a change of Green's function, you could consider this case also.

Author’s Reply :
(If Available)

Thank you for your suggestion. [ will try to do the same.

Questions from the floor included; Masashi Kashiwagi & Guo Xiong Wu.
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