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ABSTRACT

The aim of this study is develop a speci�c numerical method for the modelling of the free surface 
ow in and around a bottom standing three
dimensional Oscillating Water Column (OWC) wave power plant. The inner nonlinear potential problem is solved using a Rankine time-domain
BEM method, while the outer problem is posed as a linear time-domain and solved by a Kelvin BEM, using appropriate Green functions. The
matching occur on a �ctitious vertical surface extending from the tip of the OWC front wall down to the sea bottom. Due to this coupling of
nonlinear with linear solver, the method is called here a "semi-nonlinear" method. A general outline of the method is given here, together with
preliminary results of a simpli�ed implementation where both inner and outer solvers are linear.

INTRODUCTION

In this �rst application of the method, the power plant
is supposed to be surrounded by a open ocean of constant
water depth all around (�g.1). In other terms, the e�ects
of local bathymetry and the presence of the coastline are
not taken into account in the present study as it was in [4]
which was a linear, frequency domain approach to the same
problem. The goal here was to move from the previous fre-
quency domain simulation to a time domain approach in
order to model properly the observed nonlinear behavior of
the free-surface 
ow inside the OWC water chamber, and to
be able to incorporate in the future all the nonlinear terms
describing the power take o� and the air 
ow control system.
It would not has been possible in a frequency domain ap-
proach. Due to the resonance of the water column, the non-
linearities are mainly concentrated inside the chamber, even
in relatively calm wave climate outside. Then, the mixed
approach consisting of solving the nonlinear problem inside
and a linear one outside seemed in reasonable accordance
with the physics, at least in a certain range of moderate
wave climate. This is enforced by the fact that the geom-
etry of the problem is very favorable to such a coupling.
The coupling of nonlinear Rankine and linear Kelvin BEM
methods has already been attempted for the modelling of
the nonlinear 
ow around 
oating bodies ( [10], [5],...), and
it was often reported that numerical diÆculties may arise
at the matching point (line) of the three surfaces: the in-
ner (moving) free surface, the �xed outer free-surface and
the (locally) vertical matching boundary extending up the
free-surface. Here, these three surfaces are never in contact
with each other, but each one with the solid surface of the
front wall. They are naturally separated, and the numerical
problems are therefore avoided.

This study is divided into three parts. In the �rst one,
a computer code (ACHIL3D - [9] ) dedicated to the calcula-
tion of impulse response functions exerted on 
oating body
was modi�ed to take the �nite water depth into account;
then the inner problem was formulated and solved in both,
linear and nonlinear time domain approach. Finally, the
coupling between inner and outer problems has been for-
mulated, implemented, and tested. Preliminary results for
linear/linear coupling are reported herein. Further results of

linear/nonlinear coupling will be presented during the Work-
shop.
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Fig.1 OWC power plant: the panelized boundary of the

outer problem

THE OUTER LINEAR PROBLEM

The �rst step of this study consists in solving the outer
linear problem of the OWC. The outer boundary of the
plant one can be divided into two parts (�g.1):

1) the external wall surface , Sm

2) the matching surface, � which represents the contact
surface between inside and outside (transparent on the
�gure)

On each panel of �, the inner and the outer problems will
be subsequently matched by enforcing the continuity of both
potential and normal velocity (see section coupling). We
will consider the outer potential �e(M; t) as generated by
the 
ux from the inner domain across �. It will be sought
under the usual assumptions of irrotational potential 
ow



of lincompressible and inviscid 
uid, using the same zeroth
order direct BEM method as exposed in [9]. The major
di�erence here is that we use the �nite depth, time-domain
Green function Fh(M;M

0

; T ), instead of the in�nite depth
operator. Then, before extending the program to the �nal
OWC con�guration as explained further, we have �rst vali-
dated this new option by computing the impulsive response
of a vertical cylinder in �nite depth due to of an horizontal
motion. The results were successfully compared to McIver's
analytical solution [6].

The Green function can be written in the generic form

Fh(M;M
0

; T ) = Æ(T )G0;h(M;M
0

) +H(T )Gh(M;M
0

; T )
(1)

where G0;h(M;M
0

) denotes the impulsive part of the func-

tion, and Gh(M;M
0

; T ) the memory part. The thirdGreen

formula applied to both �e(M; t) and Fh(M;M
0

; T ) provides
the necessary Fredholm-Volterra integral equation:
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After discretization of equation (2), the external potential
is then the single output of a linear process with the normal
velocity on each panel as a multiple input. , we therefore
solve for a set of eigen-problems, each of them corresponding
to an impulsive normal velocity on one panel of � (say pi for
panel number i) and zero velocity on all the other panels of
�[Sm. This is conceptually similar to the approach exposed
by Bingham [12] at the 1998 issue of this Workshop series.
The corresponding solution �e

i (t), valid everywhere in the
outer space will be denoted �e

i;j(t) when expressed at the
centroid of panel j. We then have, symbolically

@�e
i;j(t)

@n
= ÆijÆ(t) (3)

where Æij is the Kronecker symbol, and Æ(t) the Dirac im-
pulse distribution.
According to Cummins decomposition [11], this elementary
solutions can be split into an impulsive and a memory part:

�e
i;j(t) = Æ(t)	i;j +H(t)�i;j(t) (4)

So, after having solved all these eigen-problems, we are
able to construct any potential on each facet for any kind of
normal velocity history across the matching surface, by the
following series of convolution integrals:

�e(i; t) =

n�X
j=1

Z T

0

@�e(j; t� �)

@n
:�e

j;i(�)d� 8 i 2 � t � 0

(5)
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Fig.2 potential response on the matching boundary pan-

els after an impulsive excitation in normal velocity

where n� denotes the number of panels on the matching
surface.

The global behavior of the solutions �e
j;i(�) remains

nearly same for all test cases (�g.2). Results are given here
for the case where the excited facet is panel#1 (upper row,
most external facet) when half the surface � is discretized
into 9 panels. the table below shows the impulsive part 	1;j
, while memory functions �e

1;i(�) are plotted on �g.2.

j 1 2 3
	1;j -0.14E+00 -0.34E-01 -0.13E-01
4 5 6 7

-0.46E-01 -0.31E-01 -0.20E-01 -0.27E-01
8 9

-0.24E-01 -0.20E-01

We can notice that di�erences are more important on the
impulsive part than on the memory part for this particular
case.

evaluation of the GREEN function

The most important part of the cpu time in the solution of
the outer problrm is devoted to the evaluation of the Green
function, which is far more diÆcult in �nite than in in�nite
depth. We began using a routine based on [1] and [2] but
this method was not suÆciently accurate for the calculation
of the gradient of the function in the RHS of eq.2. So we
�nally turned to use a double Fourier transform of the fre-
quency domain operators for Gh(M;M

0

; T ); on the other

hand, G0;h(M;M
0

) was evaluated using Newman's expan-
sion [7].

the di�raction problem

The di�raction problem is solved using basically the same
code (ACHIL3D). The incident wave potential �I is gen-
erated by an external spinning dipole [3], placed at some
horizontal distance (typically 10 to 20 depth) in front of the
OWC plant. The dipole, placed at mid-depth, start spinning
at a given frequency from a state of rest a t = 0 . The di�rac-
tion potential �D on all the panels of the matching surface



�, computed by the Kelvin BEM method exposed above,
is then stored for future simulations of the OWC when it is
excited by external waves. For irregular incident wave �elds,
one can superimpose several spinning dipoles according to a
given spectral discretization.

THE INNER PROBLEM

presentation

The next part of this study deals with the interior poten-
tial problem. The �nal goal is to couple the linear outer solu-
tion to the nonlinear solution of the inner problem. The in-
termediate stage which is now fully completed is to consider
a linear problem also in the inner domain, but to solve it us-
ing a Rankine BEM method which will be extended later to
account for interior free-surface displacement in time. The
mesh of the inner domain is divided into three surfaces:

1) the interior wall surface , Sm

2) The coupling surface, �

2) The inner free-surface, Sl

formulation

The third Green formula applied to the unknown inte-
rior potential �i(M; t) and to the Rankine source function

Gr(M;M
0

) provides the integral interior problem formula-
tion. A constant panel method was chosen here to remain
consistent with the outer problem solver, avoiding problems
on the matching surface.
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2
=

ZZ
Sm+Sl+�

�i(M
0

; t)
@Gr(M;M

0

)

@n
0

dc

�

ZZ
Sm+Sl+�

Gr(M;M
0

)
@�i(M

0

; t)

@n
0

dc

(6)

A fourth order Runge-Kutta scheme was used to integrate
the di�erential equations expressing the kinematic and dy-
namic free surface conditions; namely, at the present linear
stage
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On each panel of the boundaries, depending on the par-
ticular location, we have

known unknown
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Before implementing the coupling with the outer prob-
lem in order to provide a closure to the above problem, we
have tested our Rankine solver by imposing various kind of
boundary condition on �. For each test, we have performed

a lot of checking related to energy and mass conservation in
order to estimate the residual numerical dissipation of the
code for several mesh size and di�erent order of ODE solver.

The �rst straightforward test is to replace the matching
surface by a solid wall, enforcing

@�i(M;T )

@n
= 0 M 2 �

and releasing the 
uid from a non-
at initial free-surface
shape at t = 0. Figure 3 shows the evolution of potential and
kinetic energy after such an experiment, where the internal
free surface was given a half sine period shape. The balance
between kinetic and potential energy is stable and nearly
perfect (0:3% of energy loss on the reported simulation). An
other test has consisted in imposing an arti�cial absorbing
law on this surface (S(i) is the area of the facet i), imposing
a pressure proportional to the normal velocity on the panel,
with a constant damping coeÆcient

@�i(M;T )

@t
= �
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Fig.3 test of energy conservation of the inner solution af-

ter the release of the internal free-surface

The initial free-surface was uniformly surelevated in this
test, simulating a non-zero initial pressure in the OWC
chamber. Mass conservation has been checked by computing
separately the integrated mass 
ux across the mean internal
free-surface and the 
ux across the matching boundary �.
Both curves are plotted on �gure 4. The di�erence, which is
here less than 0:1% con�rms the quality of the simulation.
A third order Runge-Kutta algorithm was suÆcient to get
energy and mas conservation reported here.

THE COUPLING METHOD

When the interior problem is coupled to the outer, the
relation between the potential and the normal derivatives
on � is provided by the solution of the linear outer problem,
and by the matching conditions

�e(M; t) = �i(M; t)
@�e(M;T )

@n
= �

@�e(M;T )
@n

8M 2 �; t � 0
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Fig.4 
ow accross the inner free-surface and the matching

boundary after the release of an initial pressure step

above the internal free-surface

Such a matching between nonlinear inner solution and lin-
ear outer solution in time domain simulations was used by
e.g Dommermuth and Yue [10], and Hamilton and Yeung
[5] with the so-called shell-function method. Replacing
�e(M; t) by �i(M; t) and idem with their derivatives in eq.5
provides the necessary system to eliminate �i(k; t) in the
RHS of the integral equation eq.6. The forcing term of the
inner problem now contains convolution integrals which rep-
resent the in
uence of the history of the external 
ow on the
internal problem. It contains also the terms representing the
in
uence on each panel of the incident and di�racted wave
potentials supplied independently (and possibly in advance)
by the outer linear BEM.
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Fig.5 impulse response function of the pressure radiation

problem for an isolated bottom standing OWC

The �rst application reported here (�g.5) is related to
the linear response of the OWC of �g.1 to a step of pressure
(equivalent to 0:2h in water column units). Again the total
free-surface 
ow is plotted on �g.5. It compares very closely
to the impulse response function of the same OWC plant

geometry computed by Fourier transform of the frequency
domain approach in [4] (see �g9 p.151).

This comparison has made us con�dent in our implemen-
tation of the coupling method, and open the way to the con-
tinuation of the study towards the linear/nonlinear coupling
which is now being implemented and tested.
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