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SUMMARY
The hydrodynamic loads induced in the early stage of an impulsive vertical motion of an initially floating wedge
are investigated with the help of a small time expansion procedure. It is found that, for bodies having pronounced
flares, flow details about the intersection between the solid boundary and the free surface significantly affect
the pressure distribution all along the wetted part of the body and then the total hydrodynamic force.

1. INTRODUCTION

The hydrodynamic loads experienced by an initially
floating body during its impulsive vertical motion are
considered. The study is carried out in the hypotheses
of an ideal incompressible fluid and a two-dimensional
irrotational flow with gravity and surface tension ef-
fects being neglected.

When an initially floating body starts to move down
into the water, an accurate description of the result-
ing hydrodynamic forces requires high order uniform
initial asymptotics of the flow and the hydrodynamic
pressure distribution [1]. If a body is flared, the first
order solution is already singular about the intersec-
tion points, which makes the details of the flow about
the intersection even more important.

At the previous workshop the starting flow gener-
ated by a floating wedge impact has been analyzed
within a small time expansion procedure. Owing to
the singularity occurring at the intersection point, the
first order inner solution has been derived and matched
with the corresponding outer one [2]. The inner solu-
tion was found to be strongly dependent on the value of
the deadrise angle γ of the wedge, eventually leading,
for γ ≤ π/4, to eigensolutions orders of which are com-
parable with other terms retained in the expansions.

In order to evaluate the behavior of the hydrody-
namic force at the initial stage of the impact, a small
time expansion procedure is here developed up to the
second order. The study is performed within the frame-
work of the Lagrangian variables. The position of a
fluid particle, the velocity potential and the local pres-
sure are written as power series in time and substituted
into the governing equations thus recovering boundary-
value problems for the coefficients of the series [3]. Due
to the Lagrangian formulation employed, the boundary
value problems are defined onto a fixed domain, which
is the same at any order of the expansion.

Since the first order outer solution is singular in
this case, we follow the method of matched asymptotic
expansions [4]. According to this method, the second
order outer solution is recovered by enforcing its match-
ing with the outer limit of the first order inner solution.
It is found that the eigensolutions characterizing the
inner solution for γ ≤ π/4 require additional, non in-
teger, power of time to be introduced into the series
expansion of the outer solution. This implies that, for

bodies with pronounced flares, details of the flow about
the intersection points may significantly influence the
pressure amplitude not only close to these points but
also throughout the whole flow domain.

2. FORMULATION OF THE PROBLEM

The flow about a wedge initially floating on a still liq-
uid surface is studied during the early stage of an im-
pulsive vertical water entry. It is convenient to use
non-dimensional variables taking some quantities L∗
and V∗ as the characteristic length scale and the char-
acteristic scale of the flow velocity, respectively. In this
case the pressure scale is ρ`V 2

∗ , where ρ` is the liquid
density. All variables and quantities used below are
non-dimensionalized with respect to the chosen scales.
Particular values of the scales L∗ and V∗ do not effect
the solution procedure and are not specified here.

The entry velocity V is assumed to be constant af-
ter the initial impact. In the following γ denotes the
deadrise angle, x the horizontal axis with x = 0 at the
axis of symmetry of the body and y is the vertical axis
oriented upward with y = 0 at the still free surface.
Initially (t = 0) the wedge apex is at y = −h0. The
position of the body contour for t > 0 is described by
the equation

y = |x| tan γ − h0 − V t. (1)

The liquid is assumed ideal and incompressible and its
flow irrotational and symmetric with respect to the
axis x = 0. Gravity and surface tension effects are
neglected. The flow is described by the velocity poten-
tial φ(x, y, t).

The study is carried out within the framework of
Lagrangian variables ξ, η which identify a fluid particle
position through the relations

x = x(ξ, η, t) y = y(ξ, η, t) (2)

with ξ and η being the horizontal and vertical coordi-
nates of the particle at t = 0.

Following the approach by Korobkin & Wu [3], all
unknown quantities are presented as power series of
time and substituted into the governing equations. This
procedure provides the boundary-value problems for
the coefficients of the expansions. The mapping func-
tion from the ξ = (ξ, η) plane to the x = (x, y) one is



written as

x(ξ, t) = ξ +H(t)
∞∑
n=1

tnX(n)(ξ) , (3)

where H(t) is the Heaviside function and X(n) are the
unknown coefficients. It is convenient to introduce the
new unknown function χ(ξ, t) = −φ[x(ξ, t), t]. The
small time expansions of the velocity potential and the
hydrodynamic pressure are:

χ(ξ, t) = H(t)
∞∑
n=1

tn−1χ(n)(ξ) , (4)

p(ξ, t) = p(1)(ξ)δ(t) +H(t)
∞∑
n=2

tn−2p(n)(ξ) .(5)

Substituting (3) - (5) into the equations of motion
and the boundary conditions and collecting terms of
the same order as t → 0, we arrive at the boundary-
value problems with respect to the unknown coeffi-
cientsX(n)(ξ), χ(n)(ξ) and p(n)(ξ). In particular, equa-
tion (1) provides

η = ξ tan γ − h0, (6)
Y (1) = X(1) tan γ − V, (7)
Y (2) = X(2) tan γ . (8)

From the definition of velocity u = (φx, φy), it follows

X(1) +∇χ(1) = 0, (9)

X(2) + (∇X(1))T ·X(1) +∇χ(2) = 0, (10)

where ∇ = (∂ξ, ∂η). The continuity equation yields

∇ ·X(1) = 0, (11)

∇ ·X(2) + (∇X(1)) · (∇⊥Y (1)) = 0, (12)

where ∇⊥ = (∂η,−∂ξ). The Bernoulli’s equation gives

p(1)(ξ) = χ(1)(ξ), (13)

p(2)(ξ) = χ(2)(ξ) +
1
2
X(1) ·X(1). (14)

Finally, the dynamic condition on the free surface

p(n)(ξ) = 0 (η = 0, |ξ| > ξc), (15)

where ξc = h0 cot γ, and the far field condition

|X(n)| = O(|ξ|−2) (|ξ| → ∞) (16)

have to be also satisfied.

3. DETERMINATION OF THE EXPANSION
COEFFICIENTS

Starting from the equations derived above, the bound-
ary value problems can be formulated for the first pres-
sure coefficient p(1)(ξ, η)

∆p(1) = 0
p(1) = 0 (η = 0, |ξ| > ξc)

∂np
(1) = −V cos γ (η = |ξ| tan γ − h0, |ξ| < ξc)
p(1) → 0 (|ξ| → ∞)

and for the new unknown function q(2) = p(2)+
(
X(1)

)2
∆q(2) = 0
q(2) = 0 (η = 0, |ξ| > ξc)

∂nq
(2) = ∂n

(
X(1)

)2

(η = |ξ| tan γ − h0, |ξ| < ξc)

q(2) → 0 (|ξ| → ∞)

The solutions of these boundary-value problems are ob-
tained with the help of the conformal mapping tech-
nique. To this aim the conformal mapping

z = −ih0 +
l

w
eiγ
∫ ζ

0

(
ζ2
0

1− ζ2
0

) γ
π

dζ0 (17)

is employed, which maps the lower half-plane ζ = λ+
iµ, µ < 0, onto the fluid domain z = ξ + iη. Here
l = h0/ sin γ and

w =
∫ 1

0

(
ζ2
0

1− ζ2
0

) γ
π

dζ0 =
1√
π

Γ
(

1
2

+
γ

π

)
Γ
(

1− γ

π

)
.

Transformation (17) maps the body contour on the seg-
ment ζ = (λ, 0) |λ| < 1 and, correspondingly, the free
surface on the two lines λ < −1, µ = 0 and λ > 1,
µ = 0.

By taking into account the far field behavior of the
mapping function, it can be shown that the first order
pressure coefficient is

p(1)(z) = <
{
−iV

[
z − l

w

√
ζ2(z)− 1

]}
(18)

which, due to equation (13), coincides with the first
order coefficient of the velocity potential. By using
equation (9) the first order coefficients of the particle
displacements can be recovered as follows:

X(1)(z) = <

{
iV

[
1−

(
ζ2

ζ2(z)− 1

) 1
2−

γ
π

]}
(19)

Y (1)(z) = −<

{
V

[
1−

(
ζ2

ζ2(z)− 1

) 1
2−

γ
π

]}
(20)

To determine the second order coefficient q(2), the
Cauchy integral theorem is used. For γ 6= π/4 we ob-
tain

Q(2)(ζ) = i
CO√
ζ2 − 1

+ (21)

+
V 2 sin 2γ

2πi
√
ζ2 − 1

∫ 1

−1

(s2)1− 2γ
π (1− s2)−

1
2 + 2γ

π

s− ζ
sign(s) ds,

where q(2)(z) = <{Q(2)(ζ[z])}. For γ = π/4 equation
(21) takes a simpler form

Q(2)(ζ) =
V 2ζ

2πi
√
ζ2 − 1

ln
(
ζ − 1
ζ + 1

)
+ i

CO√
ζ2 − 1

. (22)

Once q(2) has been found, the pressure coefficient p(2)

follows from the definition of q(2) and then velocity
potential χ(2) is evaluated from equation (14).



Equations (21) and (22) show that the second or-
der solution cannot be completely determined since the
constant CO is unknown. By following the method of
the matched asymptotic expansion [4], this constant
has to be calculated using the condition of matching
between the inner limit of the second order outer solu-
tion and the outer limit of the first order inner solution.
To this aim the expressions of the inner (at first order)
and outer (at second order) velocity potential are writ-
ten in the same set of spatial variables and then the
matching is enforced. Since equation (21) is not in-
tegrable in a closed form, the matching procedure is
considered in section 5 only in the case γ = π/4.

4. OUTER LIMIT OF THE FIRST ORDER
INNER VELOCITY POTENTIAL

In [2] the first order inner solution and its asymptotic
behavior have been recovered in terms of stretched vari-
ables ϕ, ρ, which are related to the corresponding phys-
ical ones by the relations

φ(r, θ, t) = Aaσ0(t)ϕ(ρ, θ) r = a(t)ρ (23)

where σ0 = π/2β, β = π − γ,

A = V

(
h0

w sin γ

)1−σ0

σ−σ0
0 ,

r, ρ denote the distance from the right-hand side inter-
section point, θ is the angular coordinate with θ = 0
on the body contour and θ = β on the undisturbed
free surface and a(t) is the stretching function which
is determined by enforcing the matching of the inner
solution with the inner limit of the first order outer
solution:

a(t) = [(2− σ0)At]1/(2−σ0).

To make the matching with the second order outer so-
lution possible, the asymptotic behavior of the first
order inner solution has to be recast in terms of the
Lagrangian variables introduced above.

In the limit as ρ→∞, the inner velocity potential
has been found to behave as

ϕ(ρ, θ) ' −ρ 2
3 cos

(
2
3
θ

)
− 2

9π
θ sin

(
2
3
θ

)
ρ−

2
3

+
(
CI −

2
9π

ln ρ
)

cos
(

2
3
θ

)
ρ−

2
3 (24)

for γ = π/4 and as

ϕ(ρ, θ) ' −ρσ0 cos(σ0θ) + CIρ
−σ0 cos(σ0θ)

+
σ2

0

2− σ0

cos[2(1− σ0)θ]
2 cos(2γ)

ρ2(σ0−1) (25)

for γ 6= π/4. As long as γ > π/4, the eigensolution
term in (25) is of higher order with respect to the other
contributions and can be neglected.

In terms of outer variables equations (24) and (25)
take the forms

φI(r, θ, t) = −Ar 2
3 cos

(
2
3
θ

)
+

2
9π
r−

2
3 cos

(
2
3
θ

)
A2t ln

(
4
3
At

)
+A2

[
4
3
CI cos

(
2
3
θ

)
r−

2
3

− 8
27π

θ sin
(

2
3
θ

)
r−

2
3

− 8
27π

cos
(

2
3
θ

)
r−

2
3 ln r

]
t (26)

and

φI(r, θ, t) = A {−rσ0 cos(σ0θ)

+ CI [(2− σ0)A]
2σ0

2−σ0 r−σ0 cos(σ0θ)t
2σ0

2−σ0

+
cos[2(1− σ0)θ]

2 cos(2γ)
σ2

0r
2(σ0−1)At

}
(27)

respectively. Equations (26) and (27) immediately show
that the small time expansion with integer power of
time employed in the equations (3)-(5) does not al-
low the matching with the inner solution and, instead,
logarithmic time dependent terms (γ = π/4) or non
integer power of time (γ < π/4) have to be introduced.
Through this mechanism, the details of the flow in the
jet region affect in a substantial manner the dynam-
ics of the solution in a quite wider region, at least for
deadrise angle equal or smaller than π/4.

5. DEADRISE ANGLE OF 45 DEGREES

It is convenient to introduce the complex variable

τ = r exp(iθ)

with the help of which expansion (26) can be presented
as

φI(r, θ, t) = <
[
−Aτ2/3 + t ln t

(2A2

9π

)
τ−2/3 + (28)

t
(2A2

27π

)
τ−2/3

(
3 ln(

4A
3

) + 18CI − 4 ln τ
)]
.

In the leading order as t→ 0 we obtain that z − xc ≈
τ exp(−iβ) and (17) gives

z − xc =
h0

w sin γ
π

β2γ/π
[ρ exp(i(π + ω))]β/π + ...

ζ = 1− ρ exp(iω), 0 ≤ ω ≤ π

close to the intersection point, where |ζ−1| � 1. Com-
bining the latter equations, we find

2A2

9π
τ−2/3 ≈ V 2

6πi
√
ζ2 − 1

,

which makes it possible to rewrite (28) as

φI(r, θ, t) = <
[
−Aτ2/3(ζ, t) + t ln t

−V 2i

2π
√
ζ2 − 1

(29)



+ t
{
− V 2ζ

2πi
√
ζ2 − 1

ln
(ζ − 1
ζ + 1

)
− V 2i

2π
√
ζ2 − 1

[ln(3V w/4l) + 6CI ] +
V 2

2
√
ζ2 − 1

}
.

Comparing (22) and (29), one may observe that the
first term in (22) matches the asymptotic expansion
(29). It should be noted that the first term in (29)
requires further expansion as t → 0 and ζ → 1 but it
does not give a contribution of the order O(t ln t).

The outer limit of the inner solution (29) indicates
that the small time expansion of the outer solution in
the case γ = π/4 is different from (3) - (5) and has the
form

x(ξ, t) = ξ+ tX(1) + t2 ln tX(2) + t2X(3) +o(t2), (30)

χ(ξ, t) = χ(1) + t ln tχ(2) + tχ(3)(ξ) + o(t), (31)

p(ξ, t) = p(1)δ(t) + ln tp(2) + p(3) + o(1). (32)

The coefficients X(1)(ξ), χ(1)(ξ) and p(1)(ξ) were de-
termined in section 3. The functions X(2)(ξ), χ(2)(ξ)
and p(2)(ξ) represent the eigensolution of the outer
problem. They are determined using the procedure
similar to that described in section 2. We find

p(2)(ξ) = χ(2)(ξ), X(2)(ξ) = −1
2
∇p(2),

where p(2)(ξ) is the harmonic function which satisfies
homogeneous boundary conditions. The amplitude of
the eigensolution is obtained by its matching with the
inner solution (29). By algebra

χ(2)(ξ, t) = <
[ V 2i

2π
√
ζ2(z)− 1

]
(33)

and, in particular,

p(2)(λ, 0) = − V 2

2π
√

1− λ2
(|λ| < 1). (34)

Thus we arrive at the following small time expansion
of the hydrodynamic pressure along the wetted part of
the floating wedge

p(ξ, η, t) = p(1)(ξ, η)δ(t) + ln
(1
t

) V 2

2π
√

1− λ2
+O(1).

(35)
The first term in (35) is given by the pressure-impulse
theory (see section 2) but the second one reflects the
influence of the inner solution on the outer pressure
distribution. Equation (35) can be used to evaluate the
initial asymptotics of the hydrodynamic force acting on
the floating wedge.

6. HYDRODYNAMIC FORCE

Analysis of the inner solution provides that its con-
tribution to the hydrodynamic force is of the order of
O(ts) as t→ 0, where s = 2γ/(3π−4γ). Therefore, up

to the order of O(1) the asymptotics of the hydrody-
namic force F (t) is determined by the outer solution.
In the dimensional variables

F (t) = 2ρ`V 2
∗ L∗[

∫ xc

0

p(x, y(x), t)dx+ o(1)]. (36)

Here x = ξ + O(t) and asymptotics of the pressure is
given by (35). Taking V∗ = V and L∗ = h0, we obtain
in the case γ = π/4

F (t) = 2ρ`V 2h0[F0δ(t) + F1 ln
(1
t

)
+O(1)], (37)

Calculations yield

F0 =
1
2
π2Γ−4(3/4)− 1,

F1 =
1

2πw

∫ 1

0

λ1/2dλ

(1− λ2)3/4
=

1
2

√
π/2Γ−2(3/4).

The initial asymptotics of the hydrodynamic force on
a floating wedge with its deadrise angle of 45 degrees
is given as

F (t) = 2ρ`V 2h0[0.786δ(t)+0.417 ln
(1
t

)
+O(1)]. (38)

It is important to notice that this asymptotics is deter-
mined by the outer solution which is strongly affected
by details of the flow close to the intersection points
for bodies with pronounced flares.

The following term in (38) can be also evaluated
using the present results and the matching procedure.
Similar formulae can also be derived in the case γ 6=
π/4. In order to do this, asymptotics of the integral
term in (21) as |ζ − 1| � 1 has to be used.
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