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SUMMARY

We investigate the existence of embedded trapped modes near an indentation in an open channel of uniform water depth.
Modes are sought which are symmetric about the centreline of the guide and below the first nonzero cut-off for symmetric
wave propagation. An eigenfunction expansion for the trapped mode potential is obtained. A crude approximation is ob-
tained by drastically truncating the eigenfunction expansion and a transcendental equation for the trapped mode frequency
is obtained. A full numerical solution is then developed by applying a Galerkin approach. Results show that the approxi-
mate solutions are very close to the full solutions. For a given depth of indentation, embedded trapped modes can be found
for a series of discrete values of the length of indentation and the wave frequency.

1. Introduction
Trapped mode problems in open channels have been in-
vestigated by a number of authors[1]-[3]. Evans and
Linton[1] investigated trapped modes in open channels in
the presence of either a rectangular block or an indentation
on the walls. They found trapped modes which are anti-
symmetric about the centreline of the channel and which
are below the first cut-off for antisymmetric propagation
down the guide. Recently, McIver, Linton and Zhang[2]
found trapped modes in two-dimensional waveguides in
the presence of rectangular block at frequencies which are
between the first and second cut-offs. The purpose of
this work is to find possible symmetric embedded trapped
modes near an indentation in open channels for which the
frequency is below the first non-zero cut-off for symmetric
wave propagation down the guide. A crude approximation
is first exploited and then a Galerkin approach is used to
find full solutions.
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Figure 1: Definition sketch.

2. Formulation
Figure (1) illustrates a quarter section of an open channel.
Cartesian coordinates are chosen with the (x, y)-plane in

the undisturbed free surface and z vertically upwards. The
sides of the channel are at |y| = d,−∞ < x < ∞ and the
water is of uniform depth H . An indentation symmetri-
cally occupies the region |x| ≤ a, |y| ≤ b, −H ≤ z ≤ 0
so that it is uniform throughout the entire depth. We define
the inner region 0 ≤ x ≤ a as region I and the outer region
x > a as region II. The usual linearised water-wave equa-
tion governing the motion of the fluid can be described
by a velocity potential Φ(x, y, z, t) which, assuming har-
monic angular frequency ω can be written as

Φ(x, y, z, t) = Re{φ(x, y) cosh k(z + H)e−iωt} (1)

where k is the unique positive root of ω2 = gk tanh kH

and φ(x, y) satisfies

(∇2 + k2)φ = 0 in the fluid. (2)

φy = 0, |y| = b, |x| ≤ a; |y| = d, |x| > a (3)

φx = 0, |x| = a, d < |y| < b (4)

φ → 0, |x| → ∞, |y| ≤ d (5)

Suppose that motion is symmetric about the centreline and
kd < π but π < kb < 2π. If the indentation is long then
the trapped mode must represent waves incident from the
left which are totally reflected near x = a. This is physi-
cally plausible because the range of kd and kb means that
there are two possible types of progressive waves in region
I but only one in region II. Thus a wave eikx incident from
the left produces a transmitted wave T1e

ikx and a wave
eiαx cos πy/b, α2 + π2/b2 = k2 produces a transmitted
wave T2e

ikx, and so a suitable combination of these waves
produce no transmission.



We seek non-trivial solutions of (2)-(5) for certain dis-
crete values of kd corresponding to trapped modes. The
velocity potential which satisfies (2)-(5) can be either sym-
metric or anti-symmetric about the plane x = 0. Here we
restrict our discussion to the potential which is symmetric
about both plane x = 0 and y = 0. The potential can be
written in region I and II as

φI =
∞∑

n=0

U I
n

cosh(knx)
kn cosh(kna)

hI
n(y) (6)

where kn = (λ2
n − k2)1/2, 0 ≤ x < a, 0 < y < b, and

φII =
∞∑

n=1

U II
n

e−jn(x−a)

−jn
hII

n (y) (7)

where jn = (µ2
n − k2)1/2, a ≤ x < ∞, 0 < y < d, and

U I
n, U II

n unknown coefficients. Functions hI
n(y), hII

n (y)
form orthonormal sets which are given by

hI
n(y) = b−1/2εn cos λny (8)

where λn = nπ
b , n ≥ 0; ε0 = 1; εn = 21/2, n ≥ 1, and

hII
n (y) = d−1/2εn cos µny (9)

where µn = nπ
d , n ≥ 0; ε0 = 1; εn = 21/2, n ≥ 1.

The coefficient of the term corresponding to n = 0 in
(7) is forced to be zero as it represents a progressive wave.

Note that we need two wave like terms in region I and no
wave like terms in region II. This means that k0, k1 should
be imaginary, kn real for n ≥ 2, and jn real for n ≥ 1.
The non-dimensional indentation depth b/d must be in the
range of 1 < b/d < 2 if we restrict π/b < k < π/d.

Continuity of potential and its horizontal derivative
across x = a gives

∞∑
n=0

U I
n

kn
hI

n(y) =
∞∑

n=1

U II
n

1
−jn

hII
n (y), 0 ≤ y ≤ d (10)

∞∑
n=0

U I
n tanh(kna)hI

n(y)

=

{ ∑∞
n=1 U II

n hII
n (y) 0 ≤ y < d

0 d < y ≤ b
(11)

Multiplication of both sides of (10) by hII
m (y), (11) by

hI
m(y), m = 0, 1, 2, ... and integration over [0, d], [0, b]

respectively will give

∞∑
n=0

U I
n

kn
cnm =

{
−UII

m

jm
, m ≥ 1

0, m = 0
(12)

tanh(kma)U I
m =

∞∑
n=1

U II
n cmn, m ≥ 0 (13)

where

cnm =
∫ d

0

hI
n(y)hII

m (y)dy

=

{
(−1)mεmεnλn sin(λnd)

(bd)1/2(λ2
n−µ2

m)
, λn 
= µm

(b/d)1/2
, λn = µm

(14)

As c0n = 0 equation (13) reduces to tanh k0a = 0 when
m = 0 which yields tan ka = 0 since k0a = ika and
tanh(ika) = i tan ka. Thus the first condition for a non-
trivial solution to exist is

ka = nπ, n = 1, 2, 3, .... (15)

which is called side condition for convinience.

3. Approximate solution
A crude approximation to these equations is to truncate the
series at two terms in (6) and one term in (7). After some
algebraic manipulations we have

tan k′a − 4b/d sin2(d/bπ) j1d

π2(1 − (b/d)2)2 k′d
= 0 (16)

where k′a = ka(1 − π2/k2b2)1/2, k′d = kd(1 −
π2/k2b2)1/2, and j1d = (π2 − k2d2)1/2.

This is a transcendental equation for kd for a given b/d

and ka = nπ, n = 1, 2, 3, .... Solutions of this equation
will be compared to those from a full numerical solution.

4. A full numerical solution with Galerkin approach
Following the method described by Evans and
Fernyhough[4], we give a brief discription of the
Galerkin approach for this specific problem. The
common boundary of region I and II is denoted by
{L : x = a, 0 ≤ y ≤ d}, from (11), we write

U(y) =
∞∑

n=0

U I
n tanh(kna)hI

n(y)

=

{ ∑∞
n=1 U II

n hII
n (y) 0 ≤ y ≤ d

0 d ≤ y ≤ b
(17)

It follows that

U I
n = coth(kna)

∫
L

U(y)hI
n(y)dy (18)

U II
n =

∫
L

U(y)hII
n (y)dy (19)

for n = 1, 2, 3, ... since tanh(k0a)=0. Substitution of (18)
and (19) into (10) gives

∫
L

U(y′)

{ ∞∑
n=1

coth(kna)
kn

hI
n(y)hI

n(y′)

}
dy′ +

∫
L

U(y′)

{ ∞∑
n=1

j−1
n hII

n (y)hII
n (y′)

}
dy′ = 0 (20)



This is a homogeneous integral equation for U(y). The
oscillatory first term in the first summation is shifted to
the right hand side. by defining U(y) = cot(k′a)

k′d U1u(y),
after some algebra manipulation we have∫

L

u(y′)K(y, y′)dy′ = hI
1(y), y ∈ L (21)

where

K(y, y′) =
∞∑

n=2

d−1k−1
n coth(kna)hI

n(y)hI
n(y′)

+
∞∑

n=1

d−1j−1
n hII

n (y)hII
n (y′) (22)

and ∫
L

u(y)hI
1(y)dy = k′d tan(k′a) (23)

In addition to the side condition that need to be satisfied,
namely, ka = nπ, the problem has been reduced to first
solving (21) for u(y), for a given set of geometric param-
eters, and then looking for trapped mode frequency which
can be sustained by the given geometry by solving (23).
We shall adopt Galerkin approach to the solution of equa-
tions (21), (23) which we first write in the operator form

K u = hI
1 (24)

with

(u, hI
1) =

∫
L

u(y)hI
1(y)dy = A ≡ k′d tan(k′a) (25)

Rather than solve(21) directly, the Galerkin approach
seeks an approximation u ≈ U such that

(U, KU) = (U, hI
1), and A = (U, hI

1) (26)

We choose u(y) =
∑N

n=1 anun(y) for some un(y) and
unknown an, substitute into (24), multiply by um(y) and
integrate over L to give

N∑
n=1

Kmnan = Fm1, m = 1, 1, 2, ... (27)

where

Kmn = (Kun, um), Fm1 = (hI
1, um), (28)

then A =
∑N

n=1 anFn1. If (22) is used in (27) we have

Kmn =
∞∑

r=2

d−1k−1
r coth(kra)FmrFnr

+
∞∑

r=1

d−1j−1
r GmrGnr (29)

Where

Fmn = (hI
n, um) =

∫ d

0

hI
n(y)um(y)dy,

Gmn = (hI
n, um) =

∫ d

0

hII
n (y)um(y)dy (30)

Thus the equation that is used to calculate trapped mode
frequencies can be written as

tan(k′a) − A/(k′d) = 0 (31)

This equation is very similar to (16).
The choice of un(y) is guided by the requirements

of correct physical behaviour and simplicity of final
forms[5]. We expect that at y = d, u(y)(d − y)1/3 is
bounded which can be derived by a simple conformal map-
ping argument. In order to preserve simple forms for Fmn,
Gmn and hence Kmn, we choose

un(y) =
2n!Γ(1/6)b1/2d−1/3

(−1)n
√

2πΓ(2n + 1/3)(d2 − y2)1/3
C

1/6
2n

(y

d

)
(32)

where

Cν
n(cos θ) =

n∑
r=0

Γ(ν + r)Γ(ν + n − r)
r!(n − r)![Γ(ν)]2

cos(n − 2r)θ

(33)
are the ultra-spherical Gegenbauer polynomials. After
some algebra, it can be shown that

Fmn =
J2m+1/6(nπd/b)

(2nπd/b)1/6
(34)

Gmn =
(

b

d

)1/2 J2m+1/6(nπ)
(2nπ)1/6

(35)

5. Numerical results and discussion
We firstly discuss the approximate solution. From equa-
tion (16), the first term tan(k′a) should be positive since
the second term in (16) is negative. Thus it gives mπ <

k′a <
(
m + 1

2

)
π, m = 0, 1, 2, .... Combining with the

side condition(ka = nπ), we have

nπd/b

(n2 − m2)1/2
< kd <

nπd/b

(n2 − (m + 1/2)2)1/2
(36)

b

d
(n2 − m2)1/2 <

a

d
<

b

d
(n2 − (m + 1/2)2)1/2 (37)

where m < n; n = 1, 2, ..., ; m = 0, 1, 2, ..., n − 1 since
k′a < ka. From this relation, we know that, as the length
of indentation increases (increasing n), the lowest mode
frequency tends to π

b/d .
For a fixed b/d > 1 and ka = nπ, the maximum num-

ber of possible trapped mode solutions is n. We denote
any one of the solutions as (n, m) in which n comes from
ka = nπ, and m = 0, 1, ..., n− 1. Thus (n, 0) represents
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Figure 2: Variation of kd with b/d for ka = 4π
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Figure 3: Variation of a/d with b/d for ka = 4π

the lowest mode and (n, m − 1) the highest mode for a
given 1 < b/d < 2. From (36) we can derive the low-
est value of b/d above which a higher mode can be found.
This can be written as

b/d > n/(n2 − m2)1/2 (38)

Thus the lowest mode can always be found if b/d > 1
while higher modes can only be found if b/d satisfies (38).

Figure (2) and (3) shows the approximate solution and
full solution for ka = 4π , namely, n = 4, where (4, 0)
represents the lowest mode and (4, 3) the highest modes.
From these results we know that when b/d → 1 the solu-
tion tends to be a standing wave solutions, and the approx-
imate solutions are very close to the full solutions. The
second mode comes when b/d > 4/

√
15, the third mode

b/d > 4/
√

12, and the fourth mode b/d > 4/
√

7.
The use of Gegenbauer polynomials in Galerkin method

makes the system converge very quickly. In calculation, 4
decimal place accuracy is achieved by truncating the sys-
tem at 4 terms.

6. Conclusion
Embedded trapped modes have been found which are sym-
metric about the centreline of the guide and below the first
nonzero cut-off for symmetric wave propagation. For a
given depth of indentation, embedded trapped modes can
be found for a series of discrete values of the length of
indentation and the wave frequency. Results of a crude
approximate solution are very close to those from a full
numerical solution.

There will be more than two wave-like terms in region I
if b/d > 2 for π/b < k < π/d. All oscillatory terms in the
first summation in (20) should be moved to right hand side.
The proper mathematical treatment will result in a system
of linear equations for which the condition of non-trivial
solution to exist is its determinant to be zero. However,
there will be no simple approximate solution availabe in
this case.
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