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1 Introduction

The wave environment determines important loads on marine structures that operate at sea, either
in transport, kept in position or being stationary. The description of the ocean waves is an impor-
tant part of the determination of the loads acting on the structures. A proper design wave may in
many cases fulfil engineering needs. However, a number of observations suggest the existence of
certain giant waves - sometimes called freak waves or rogue waves. They are significantly higher
and steeper than what is expected by current knowledge of wave statistics, under the given weather
conditions. Visual observations of very large and steep waves are documented, see ISSC-Report
(2000). As a first step towards a description of interaction between extreme waves and marine
structures we here analyse what can be a realistic wave input. We model large wave events using
a fully nonlinear solver and compare the results with simulations using simplified Schrodinger-like
equations.

2 Numerical experiment

We investigate the evolution of a localized long wave packet. First, we compute an exact steady
Stokes wave, with wavenumber ko and half-height a. The surface elevation and the tangential
velocity at the surface are then multiplied by the ‘bell’ function: sech [eﬁakg(m - ;130)] , where
the parameter ¢ determines the length of the packet. The case ¢ = 1 corresponds to an exact
NLS soliton. This problem has been studied analytically by Satsuma and Yajima (1974) using
NLS, and numerically by Lo and Mei (1983) using Dysthe’s equation. We complete their works in
comparing simulations using the fully nonlinear equations (Clamond & Grue 2001) with the (fully
dispersive) extended Dysthe’s equation of Trulsen et al. (2000).

We consider here a wave packet with akg = 0.091 and € = 0.263. The computational domain
involves 128 wavelengths, and the carrier wave is discretized over 32 nodes per wavelength. This
means that all harmonics up to the 15th are resolved, and that 128 Fourier modes are included
in the spectral band [kq— %ko; ko+ %ko]. (Runs with several resolutions have been made, for check.)

According to predictions by NLS, three solitons should be formed, and, in addition, some
dispersive tails. This is indeed demonstrated by all the models. The initially long group splits,
after some time, into solitons which become interacting. Large waves up to three times the
initial maximum elevation are formed. These freak waves appear for a while. After a period, the
‘freaking’ stops, also for a while. Then it starts again, and stop, and restart, etc. To understand
this recurrent phenomenon, we consider the wave envelope of the fundamental wavelength.

With the fully nonlinear simulations, two solitons appear in the front of the train (Fig. 1).
The flow is highly unsteady. A rapid exchange of energy takes places. Large and frequent waves
are thus formed. More surprisingly, the small soliton can “pass ahead” the larger one (Fig. 1-b).
This is an unexpected behaviour, according to simplified models. Such a behaviour has neither
been observed experimentally. This is most possibly due to the spatial limitation of physical wave
tanks.



With the extended Dysthe equation, the two-soliton appear in the back of the train. Once
formed, the evolution of the solitons is almost steady. A large steady soliton run ahead. Little
energy is exchanged between the solitons. Weak interaction indicates a gentle variation of the
height of the two last solitons. As a consequence, no very big waves are formed (Fig. 3).

For short times, however, the maximum elevation predicted by the two models match. In
particular, the first large wave event is rather well predict in both time and amplitude (Fig. 1-a).
This is logical since Dysthe’s equation is valid while (akq)3wot < O(1).

When the wave packet propagates without creating large waves, the energy is concentrated in
a narrow-banded region of the spectrum (Fig. 2-a-c). During the ‘freaking’ events, an important
quantity of energy is transferred between the Fourier modes. The large waves being steep, high
wavenumbers contains a significant portion of the energy (Fig. 2-b-d). In other words, important
energy is transferred from low to high wavenumbers. Figure 2 illustrates a growth in the form of
side-band instability. This instability is not a Benjamin—Feir one. Indeed, in this experiment, all
the Fourier modes are locked in phase. Shorter packet (i.e. when only one soliton can be formed)
have spectra that are more broad-banded spectra. These spectra also include the unstable modes
in the Benjamin—Feir sens. In such cases, no large waves are formed, however.

The temporal scenario presents different interesting characteristics. Intermittent oscillations
appear when the waves are large. The period of these oscillations is twice the fundamental period
(see the zoom in Fig. 3). Some energy is then transfered to the lower frequencies. No equivalent
phenomenon occurs in space (i.e. no double wavelength appears). This phenomenon is not at all
predicited by any simplified equations. The reason is that the period doubling is automatically
excluded by the assumption of narrow-banded spectra.

Period-doubling is a well-known mechanism explaining the transition to turbulence of viscous
flows. In our knowledge, this phenomenon for water wave has never been described. It is certainly
an important aspect for understanding the mechanisms leading to breaking.

3 Conclusion

Comparisons — between a fully nonlinear and approximate equations — of some freak wave
events, show both quantitatively and qualitatively very different behaviours. Some apparently
very important phenomenae, like intermittence, are not at all predicted by simplified equations of
Schrodinger-type. The cause 1s more due to their narrow-banded spectra assumption than due to
their weakly nonlinearities.

This work was conducted under the Strategic University Programme ‘General Analysis of Realistic
Ocean Waves’ funded by the Research Council of Norway.
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Figure 1: Surface’s envelope at two different times.
— Fully nonlinear, — — Extended Dysthe’s equation.
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Figure 2: Spectrum of surface’s slope at two different times.
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Figure 3: Temporal evolution of the surface marimum elevation.
— Fully nonlinear, — — Extended Dysthe’s equation.
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