Role of Surface Tension in Modelling Ship Waves
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The surface tension is often ignored in describing water waves around large floating bodies, since its
effect is considered to be significant only for rather short waves commonly called ripples whose wavelength
is of order in centimeters. However, the theory of gravity waves may yield waves of very short length which
cannot be ignored and cause substantial difficulties in modelling them. The work on the wave pattern
due to a steady-moving concentrated pressure on the free surface by Ursell (1960) showed that the wave
elevation near the track of pressure point from the linearized pure-gravity theory oscillates with indefinitely
increasing amplitude and indefinitely decreasing wavelength. For the more general case of a point source
both pulsating and advancing at a uniform speed, similar behavior is revealed in a recent work by Chen & Wu
(2001). These singular and highly oscillatory properties being manifestly non-physical, it is expected that
the surface tension plays an important role in modelling ship waves, at least part of them. The description
of ship waves including the effect of surface tension is summarized here.

We consider the steady free-surface potential flow generated by a source advancing at constant horizontal
speed. The dispersion function associated with the free-surface boundary condition including the surface
tension is written as

D(a,f)=a® k- o’k (1)

in which («, 3) are the speed-scaled Fourier variables associated with the Froude number F = U/\/gL, and

k = y/a? + 32 the wavenumber. Here, U is the forward speed, g the acceleration due to gravity and L a
reference length. Furthermore, the parameter ¢ is defined by

o= \/T/(pgL?)/F? 2)

where T is the surface tension'. The characteristic wavenumber of capillary waves according to Lighthill
(1978) is \/pg/T while the fundamental wavenumber of gravity ship waves is g/U?, so that the parameter o
is the ratio of both since

1

o=ko/k,,  with ko=1/F? and k,, = L\/pg/T (3)

It’s evident to consider ¢ as an important parameter in characterizing the capillary-gravity ship waves.

The dispersion curves defined by D = 0 are symmetrical with respect to both axes o = 0 and g = 0.
In the quadrant o > 0 and 4 > 0, the dispersion curve is defined explicitly in polar coordinates (k, #)

Lo kq(0) = 2/(cos? 0 + Vcos' 0 — 402) k <k, A
= kr(0) = (cos® 0 + Vcos* 0 — 402) /(20%) k> k, W

with k, = 1/0. The curve described by (4) is a closed one limited in the region
0<6<4, with 6, = arctan[\/(1 — 20)/(20)] (5)

At 8 =0, we have k = k,. At 8 =0, we define

ko=2/(1+v1-462) and Kk =(1+v1-402)/(20%) (6)

so that the dispersion curve intersects the a-axis at o = kg and a = k.

The dispersion curves given by (4) are depicted on the left part of Figure 1 at a Froude number F' = 0.1
(using L = 1 m) for 0 = 0 when the surface tension is ignored and ¢ = 0.275 when the surface tension is
included. The dispersion curve without the surface tension (o0 = 0) represented by the dashed line is given
by k = 1/ cos? # and corresponds to the case usually called Neumann-Kelvin ship waves. It is an open curve
as k — oo when 6 — /2. The dispersion curve with the surface tension (o # 0) is a closed one with a
maximum wavenumber k9. defined by (6). The point (k,, 8, ) divides the dispersion curve into two portions :

IThe surface tension T takes the value 0.074 N/m for the air-water interface at 20° C.



one (kg < ko, thick solid line) along which the effect of gravity is dominant and another (k7 > k., thin solid
line) along which the capillarity is dominant.

The asymptotic analysis based on the stationary-phase argument realized in Chen & Noblesse (1997)
gives a direct relationship between the dispersion curves in the Fourier plane and the corresponding wave
systems on the free surface. Indeed, the constant-phase curve (crestlines) and related wavelength, directions
of wave propagation, cusp angles, and phase and group velocities can be determined explicitely from the
dispersion function. In particular, the crestlines are given by a simple formula

(xay)n:Cn(DaaDﬂ)/(O‘Da+ﬂDﬁ) (7&)
with the phase constant C,, defined by
C,, = —sign(a’D, +aBDg) - (27)n (7b)

in our case of steady ship waves. On the right part of Figure 1, we depict the crestlines for n = (1,2,---,5)
defined by (7) associated with the dispersion curves plotted on the left part of the figure. The Neumann-

Figure 1: Dispersion curves (left) and crestlines (right) of capillary-gravity ship waves at F = 0.1
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Kelvin ship waves represented by dashed lines composed of transverse and divergent waves are present only
in the downstream and limited by a cusp line (dot-dashed line). The ship waves including the surface
tension are present in both upstream and downstream. The upstream crestlines associated with the part of
dispersion curve at kr > k, are capillary waves and plotted by thin solid lines. The wavelength of upstream
capillary waves is of order 2w F?2 /kS..

The downstream crestlines (thick solid lines) associated with the part of dispersion curve at k, < k, are
gravity-dominant waves. Comparing to the pure-gravity waves (dashed lines), the transverse waves keep the
same profile with a slight shorter wavelength 27?2/ k:g instead of 2w /kg (egs. 3 and 6). The most striking
feature concerns the divergent waves which disappear completely at this value of ¢ (in fact for o > ¢ given
in the following) due to the effect of surface tension. In their place, the transverse waves are extended
smoothly outward to a region limited by the ray (dotted line) forming an angle ~, with the negative-z axis

defined in
~ =arctan[y/(—z)] < v, =71/2 — 0, (8)

The crestlines for n = (1,2,---,5) are depicted on Figure 2 for ¢ = 0.02 (left part). Only those of
downstream waves are drawn for the sake of clarity. The transverse waves are represented by thick solid
lines and the divergent waves by thin solid lines, while the rest of capillary-gravity waves by dashed lines
limited by the dotted ray (v = v,). The variation of ~, given in (8) is plotted on the left part of Figure
3. 7 = 0 at 0 = 0 means that no capillary waves exist since the effect of surface tension is ignored. At
o = g, = 1/2, the dispersion curve reduces to a point (2,0) and v, = 7/2 which means that all steady waves
disappear (no wavy deformation of the free surface) since ship’s speed is less than the minimum velocity of
capillary-gravity waves so that waves propagating at ship’s speed cannot be generated.

There are two other important rays, more evident on the right part of Figure 2 on which only crestlines
of divergent waves are kept. One represented by the thin dot-dashed line is close to the cusp line of Kelvin
ship waves, and another by thick dot-dashed line. We denote the two rays respectively by v = ~. and
v = 7o the angles forming with the negative-z axis. Same as 7., the ray-angles . and ~g are function of the



Figure 2: Crestlines of capillary-gravity ship waves at o = 0.02 (left) and definition of rays (right)
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parameter o. Following the work presented in [4], the value of 7, is associated with the normal direction at
the first point of inflection along the dispersion curve, which is quite close to that for the Neumann-Kelvin
ship waves. There exists a second inflection point along the dispersion curve of capillary-gravity ship waves
at low values of 0. The value of v is given by the normal direction at this second point of inflection. The
ray-angle . becomes the cusp angle 70 = v.(0 = 0) ~ 19°28' of pure-gravity ship waves when o — 0 while
Yo tends to zero. The variation of . and ~g is shown on the right part of Figure 3. The value of o9 ~ 0.133
at which v9 = 7. is used to rescale the g-axis on the figure. The cusp angle v, (thin solid line) is slightly
larger than that of pure-gravity ship waves. The ray-angle v (thick solid line) increases rapidly for o > 0
and touches the same value as =y, for ¢ = gg.

Figure 3: Ray-angles v, (left), v, and o (right) dependent on the parameter o
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It is shown that the divergent waves can be found only in the region (7o < v < 9.) where transverse
waves appear as well. In the region near the ship’s track (0 < v < ), only transverse waves are present.
Since 7o increases significantly with increasing o (corresponding to the decrease of forward speed), the region
(0 < v < 7v.) where divergent waves appear is more and more reduced. At ¢ = gg &~ 0.133 (corresponding
to U = Up =~ 0.450 m/s), there does not exist any divergent wave.

These results concerning divergent waves are welcome in the modelling of ship waves, since we know
from [1] and [2] that, by excluding the surface tension, the part of divergent waves becomes extremely
oscillatory and singular so that substantial difficulties arise in their numerical computations. Following the
development presented in [5], we may write the wave component of capillary-gravity steady flow by the sum
of two parts :

G = (Gy +GT)/(nF?) (9a)

in which the gravity-dominant waves GZV and the capillarity-dominant waves G;’l are expressed by a single
integral along the part of dispersion curve k; < k,

0o
GV = / (1—5,) kg d9 e*ks sin(xk, cos §) cos(yk, sin 0) (9b)
g 0 ‘Dk|g



and along the part kr > k.

GY = /00(1 —S7) o b e**T sin(zky cos @) cos(ykr sin 6) (9¢)
0 | D7
respectively, and with
Sy =sign(xDa +yDg)|k—k, : St =-sign(xDa +yDg)|k—ks (9d)
and
[Dly = |2kgcos®0 — 1 —30%k2| 5 |Dgly = |2kp cos®6 — 1 — 306°k7 | (9e)

The single integrals (9b) and (9¢) are convergent even for z = 0, i.e., when both the source and field
points are located at the free surface, since the amplitude of oscillatory integrands is of order O(1/k) instead
of O(k) if the surface tension is excluded. Furthermore, both k, and k; have finite value for o > 0 so that

Gg‘ and G} are not singular. The ship waves given by (9b) and (9c) are illustrated on Figure 4. The gravity-

Figure 4: Ship waves along a transversal cut (left) and a longitudinal cut (right)
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dominant waves GZV are plotted on the left part of the figure along a transversal cut (z = —20F?). The waves

at o = 0.1,0.05 and 0.02 are plotted with thick solid lines, thin solid lines and dashed lines, respectively. The
capillarity-dominant waves G%’Y are plotted on the right part of the figure along a longitudinal cut (y = 0).
The waves at ¢ = 0.275,0.2 and 0.15 are plotted with thick solid lines, thin solid lines and dashed lines,
respectively. The source and field points are both located at the free surface (z = 0). These results confirm
that waves generated by a point source steadily advancing on the free surface are not singular on the free
surface including the region close to the track of the source.

In summary, the steady ship waves including the surface tension are analyzed using directly the rela-
tionship between the dispersion relation and far-field waves - results obtained in [4]. Tt is shown that the role
of surface tension in modelling ship waves is twofold. Firstly, including the effect of surface tension yields
more realistic description of ship waves. Especially for low forward speed, the divergent waves are largely
compressed and appear only in a zone between two rays : the line (v = v¢) and the cusp (v = 7.). At
lower speed of U < Uy = 0.450 m/s (corresponding to ¢ = og = 0.133), no divergent waves exist. When
U < U, =~ 0.232 m/s (corresponding to ¢ = o, = 0.5), no wave can be generated. Secondly, introducing
of surface tension in the formulation of ship waves eliminates the singularity of the Green function when
both the source and field points are at the free surface. These benefits will be much more enjoyed in the
numerical development of practical computation methods.
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