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SUMMARY
The role played by surface tension onto the wave breaking flow generated by a submerged hydrofoil is numerically
investigated by a two-fluids Navier-Stokes approach. Both the initial breaking establishment and the successive
evolution are addressed. Increasing surface tension is found to progressively suppress the initial jet formation
and the entrainment of air.

1. INTRODUCTION

The role played by surface tension on the initial tran-
sient and the successive evolution of the breaking wavy
flow that takes place when a submerged hydrofoil moves
beneath the free surface is numerically investigated.

The motivation for this activity stems from the
need of understanding the breaking occurring at the
ship bow at full scale. In model testing of ships with
pronounced flare, the occurrence of breaking and the
wave pattern downstream the impact point are affected
by the strong action of surface tension and may signif-
icantly differ from the full scale one.

The study is carried out by using a two-fluids Navier-
Stokes solver coupled with the Level-set technique for
the interface capturing. To reduce the computational
effort, an unsteady heterogeneous domain decompo-
sition approach is employed, which uses a potential
model to describe the flow about the hydrofoil and a
viscous model to describe the flow in the free surface
region. As suggested by Brackbill et al. [1] a contin-
uum model is adopted to include surface tension effects
in the momentum equation.

The numerical model has been deeply validated in
the past and some results were presented at the last
Workshop [2] while a more detailed description may be
found in [3], along with some results concerning the
shear flow developing just beneath the free surface as
a consequence of the breaking establishment.

In the present work, three different flow regimes in
the breaking zone are obtained by varying the surface
tension coefficient. The flow about a NACA 0012 hy-
drofoil, 5 degrees angle of attack, is simulated in the
same conditions as the original experiment by Duncan
[4] but for the Reynolds number. Then the surface
tension coefficient is increased in such a way the We-
ber number is halved twice. It is observed that the
growing surface tension effect leads to different mech-
anisms in the wave breaking process with differences
arising both in the initial transient and in the final
quasi-steady stage.

2. DOMAIN DECOMPOSITION APPROACH

The flow about a submerged hydrofoil is numerically
simulated with the help of a heterogeneous domain de-
composition approach which uses a potential model to
describe the flow about the hydrofoil vicinities and a
viscous flow model to describe the flow in the free sur-

face region. To allow the description of complex free
surface configurations, a two-fluids model is used in
conjunction with the Navier-Stokes equations. In the
following, the numerical models employed in the two
regions are briefly discussed along with the coupling
procedure.

2.1 TWO-FLUIDS MODEL

The flow of air and water is approximated as that of
a single incompressible fluid whose density and viscos-
ity change across the interface. In an Eulerian frame
of reference, local fluid properties changes with time
only due to the interface motion. The dimensionless
unsteady Navier-Stokes equations in generalized coor-
dinates ξm are:
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where ui is the i−th cartesian velocity component and
the quantity

Um = J−1 ∂ξm
∂xj

uj (3)

is the volume flux through the ξm iso-surface where
J−1 is the inverse of the Jacobian. In eq. (2)
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are the Froude, Reynolds and Weber numbers, respec-
tively, with Ur,Lr denoting reference values for velocity
and length. σ is the surface tension coefficient while
%w, µw are the values of density and dynamic viscosity
in water and are used as reference values. In equation
(2)
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are metric terms, κ is the local curvature and H(d)
is the Heaviside function based on the signed normal
distance from the interface d(x, t).



To reconstruct the distribution of fluid properties,
the actual location of the interface has to be captured.
In the level-set technique fluid properties are assumed
to be function of d. At t = 0 this function is initialized
as d > 0 in water, d < 0 in air and d = 0 at the
interface [5]. The generic fluid property f is assumed
to be f(d) = fw if d > δ, f(d) = fa if d < −δ and

f(d) = (fw + fa)/2 + (fw − fa)/2 sin(πd/(2δ))

otherwise, δ being the half width of a transition region
introduced to smooth the jump in fluid properties. The
same smoothing is applied to the Heaviside function H.

During the evolution the distance is transported by
the flow according to the equation

∂d

∂t
+ u · ∇d = 0 (4)

The interface being a material surface, its location is
captured as the level d = 0. To keep constant in time
the width of the transition region the distribution of
the distance function is periodically reinitialized by
computing, at each cell center, the minimum distance
from the interface.

Disturbances outgoing from the computational do-
main are damped by two beach regions located about
the two ends of the domain. Let y = 0 to denote the
still water level, eq. (4) takes the following form:

∂d

∂t
= u · ∇d− ν(d+ y) (5)

where ν is zero up to the inner limits of the beaches
and grows quadratically toward the boundaries of the
computational domain.

The numerical solution of the Navier-Stokes equa-
tions is achieved through a finite difference solver on a
non staggered grid. Cartesian velocities and pressure
are defined at the cell centers while volume fluxes are
defined at the mid point of the cell faces and are com-
puted by using a quadratic upwind scheme (QUICK) to
interpolate cartesian velocities. The momentum equa-
tion is integrated in time with a semi-implicit scheme:
convective terms and the off-diagonal part of the dif-
fusive ones are computed explicitly with a third-order
Runge-Kutta scheme while a Crank-Nicolson discretiza-
tion is employed for the diagonal part of the diffusive
terms. A fractional step approach is used: an auxil-
iary velocity field is obtained by neglecting the pressure
term on the right hand side of the momentum equa-
tion (predictor step) and in a second stage (corrector
step) the velocity field is updated by adding a pressure
correction contribution. The latter is obtained by en-
forcing continuity thus yielding to a Poisson equation
which is solved by using a multigrid technique.

2.2 POTENTIAL FLOW MODEL AND COUPLING
PROCEDURE

In the hydrofoil vicinities, a potential model is used
which allows to describe the flow in terms of a scalar

function ϕ. A pseudo-steady Kutta condition is ap-
plied so that the flow at the trailing edge is directed
along the chord of the hydrofoil. The potential flow
domain is bounded by the hydrofoil, by the ends of the
computational domain at the two sides, by the bottom
of the channel from below and by the matching line
from the top.

Due to the incompressible assumption, the flow in
the potential region is governed by the Laplace equa-
tion which solution is sought with the help of a bound-
ary integral representation of the velocity potential.
On the matching line, which is located in the water
domain, the velocity potential is assigned by integrat-
ing in time the unsteady Bernoulli’s equation
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where, from the continuity of the normal stresses, pB is
related to the pressure field in the free surface domain
pF through the relation

pB = pF − 2µw
∂un
∂n

All along the other boundaries Neumann boundary
conditions are applied. The solution of the boundary
integral equation provides the normal derivative of the
velocity potential on the matching line and the velocity
potential along the other boundaries.

The solution in the free surface domain is performed
by first. This provides pressure and velocity distribu-
tions at the matching line that are used to get the
source term of eq. (6). The latter is integrated in time
to update the the velocity potential on the matching
line which is used as Dirichlet condition for the solution
of the boundary value problem. This allows to evaluate
the velocity field on the matching line which is used as
boundary condition for the Navier-Stokes solver at the
next step.

3. NUMERICAL RESULTS

The flow about a NACA 0012 hydrofoil, 5 degrees an-
gle of attack is simulated in the same conditions as the
original experiment by Duncan [4]. The ratio between
submergence and chord is 0.783. Numerical computa-
tions are carried out at a Reynolds number Re = 1000,
significantly smaller than the experimental one, while
both the Froude and Weber numbers are the same of
the experiment Fr = 0.567 and We = 42. To reduce
the formation of forward propagating waves generated
by an impulsive start, a sinusoidal ramp is used to ac-
celerate the hydrofoil up to the final speed which is
reached at t = 10. Starting from these conditions, the
Weber number is halved twice by varying the surface
tension coefficient and three different flow regimes in
the breaking zone are obtained.

In Fig. 1 and Fig. 2, the free surface profiles ob-
tained at t = 13.8 and t = 14.2 are shown. In these pic-
tures, differences in the breaking wave establishment



and in the air entrainment induced by the different
surface tension coefficients are evident. In particular
it is worth to notice the progressive suppression of the
initial jet formation which is replaced by the formation
of a large bulge which slides along the forward face
of the wave. This process is evident in the sequence
in Fig. 3 where the vorticity by density contours are
shown along with the transition region.
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Figure 1: Different breaking onset generated by
increasing value of the surface tension coefficient
(t = 14.2). From top to bottom We = 42, 21, 10.5.
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Figure 2: Effect of the surface tension coefficient
onto the air-entrapment (t = 13.8). From top to
bottom We = 42, 21, 10.5.

In Fig. 4 and Fig. 5 the vorticity by density con-
tours corresponding to the configurations of Fig. 1,2
are shown. In spite of the thick transition region, a

clear difference in the vorticity production mechanism
appear, with the highest surface tension case charac-
terized by a larger curvature that cause flow separation
at the toe of the bulge thus resulting in a stronger vor-
ticity production and a faster downstream diffusion.
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Figure 3: Time evolution of the ω% field into the
bulge during the breaking onset (We = 10.5).
From top to bottom t = 10.8, 12.8, 13.6.

In Fig. 6 the history of the free surface profile is shown
for a very long time evolution of the lowest Weber num-
ber case (We = 10.5). The sequence shows that the
front face of the bulge slightly oscillates and down-
stream propagating ripples are generated each time the
bulge reaches its foremost position. In the region where
ripples are generated, the computational grid has a hor-
izontal spacing ∆x ∼ 0.01 that means about forty grid
points per ripples wavelength. As observed by Dun-
can [6], bulge oscillations, which slightly decay in time,
are induced by the start from the rest. In the numer-
ical results, the period of the oscillations corresponds
to that measured by Duncan [6], that is about 4 times
the period of the following gravity waves.

Although mechanisms responsible for the ripples
formation are still under investigation, a better under-
standing of their propagation properties can be achieved
by using the value of σ for the water, reducing the
length of the body instead. In this way, the correspond-
ing scale of the problem results in a hydrofoil length of
0.0125m, towed at the same Fr number. With this
set of values, the computation shows ripples having a
dimensional wavelength of about 0.005m, which makes
their propagation highly dominated by surface tension.
In fact, for λ = 0.005m, the linear theory provides
a wave speed of c ∼ 1.5cm = 0.345ms−1, cm being



0.23ms−1 for water [7], which is quite close to the rip-
ples propagation speed co ∼ 0.35ms−1 recovered by
numerical results.
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Figure 4: Contour of ω% at t = 13.8. From top to
bottom We = 42, 21, 10.5.
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Figure 5: Contour of ω% at t = 14.2. From top to
bottom We = 42, 21, 10.5.
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Figure 6: History of the free surface profile for the
case We = 10.5. Arrows locate times at which
downstream propagating ripples appear.
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