A VLFP on Infinite, Finite and Shallow Water
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Diffraction of surface waves by very large floating platform (VLFP) is investigated for three cases: infinite, finite and shallow
water. An analytical study is presented for the deflection of the platform, reflection and transmission of incoming waves. For
each case the problem is solved for two forms of the platform: strip of the infinite width and semi-infinite plate. The platform
is idealized as a plate with elastic properties of zero thickness. Integro-differential, boundary and transition equations and
Green'’s function are used for the solution. Numerical results are obtained for various values of general parameters. Deflection
of the semi-infinite platform and of the strip are compared for different values of depth.

1 Introduction

The study of the behavior of floating flexible plates on waves obtain great interest. This problem is important thanks
to the investigation of the interaction between large floating platforms (airports etc.) or ice fields and surface waves.
The thickness of the floating objects compared to horizontal parameters is small and they are modeled as thin elastic
plates.

Here we study the diffraction of surface waves by large floating flexible platform (FFP) of general geometric form
which floats on surface of the incompressible fluid of infinite (IWD), finite (FWD) and shallow (SWD) water depth.

We solve the problem for oblique incident waves including perpendicular waves. Two cases of the problem are
considered for different form of the platform: a semi-infinite plate and an infinitely long strip of finite width. For
both cases results are obtained and compared. Reflection and transmission of incoming waves are investigated.

2 Formulation of the problem

The mathematical formulation is derived for the diffraction of waves by FFP which floats at the surface of an ideal
incompressible fluid of depth i which is varied for different cases. Differences of IWD, FWD and SWD cases will be
indicated in paper. Incoming short waves propagates from the open fluid (in positive z-direction). We assume waves
in still water and introduce the velocity potential V®(z,y, z,t) = V(z,y, 2,t). ®(z,y,z,t) is a solution of the Laplace
equation
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in the fluid (z < 0) together with the conditions:
at the bottom z = —h (not valid for IWD)
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and surface conditions at z = 0
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where w(z,y, z,t) denotes the free surface elevation under the platform. Here and below for case of the strip of width
[ of infinite length 0 < x <[, —c0 < y < oo we define fluid area —oco < OU Il < oo as F, platform area 0 < x <[ as
P and the dividing surface x = 0U z = [ as S; and for the semi-infinite platform (SIP) 0 < z < 00, —00 < y < 00
respectively F is ¢ < —oo, P is ¢ > oo and § is z = 0. The platform is assumed to be a thin layer at the free
surface z = 0, which seems to be a good model for a shallow draft platform which is modeled then as an elastic plate
with zero thickness. To describe the deflection of the platform w we apply the thin plate theory, which leads to a
differential equation in the following form:
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at z = 0 for the platform area x € P, where m is the mass of unit area of the platform, D is its equivalent flexural
rigidity, P is the pressure
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here p is the density of the water.
The free edges of the platform are free of moment and shear force, boundary conditions are:
0w 0w Pw Pw
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where v is Poisson’s ratio.
For shallow water transition conditions at the edges of the platform are

®,, and ®; continuous at z € S (7)

where n is the normal to the edge of platform. Physically these conditions express that the mass of the water is
conserved and the energy flux is continuous.
The incident wave equals

_ cosh kg (Z + h) %eiko(z cos B+ysin 3) for FWD
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where ( is the wave height, w is the frequency and ko is the wave number. ky = w?/g for IWD , ko = w/+/gh for
SWD while for FWD it obeys the dispersion relation ko tanh koh = K, here K = w?/g. Length of incoming waves is
A= 27T/k0.

The harmonic wave can be written as

®(z,y,2,t) = ¢(z,y,2)e”™" (9)

3 Solution

The solution will be derived for all cases for the strip and for the half-plane platform.
For infinite and finite water depth cases we apply the operator 8/9t to (4) and use the surface condition and
(5) to arrive at the following equation for ® at z = 0 in the platform area (z,y) € P:
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Using the integro-differential formulation derived in HERMANS (2001) and Green’s theorem leads us to such
equation for the deflection w:
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here we introduce parameters D = D/pg, u = mw?/pg. The Green’s function, obeying the boundary conditions at
the free surface and at the bottom (for FWD) and radiation condition, has the form
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where £’ - contour of integration in the complex k-plane, Jo(kr) - Bessel’s and H{ (kr) - Hankel’s functions, while r
is horizontal distance, so r = \/(z — €)% + (y — n)2.

For the platform which floats in shallow water in accordance with the derivation of the shallow water theory by
STOKER (1957) we have such condition
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The general solution of (14) and the conditions at co leads to:

¢(w,y) _ eiko(zcosﬁ—i-ysinﬁ) + Re—ikow cosB+ikoysinB7 z>1 (16)

where the first term represent a progressed wave moving to the right and second - reflected wave moving to the left.
|R| is amplitude of the reflected wave.

¢(w,y) — Teikg(z c0s6+ysin6)7 z<0 (17)

where 7' - the amplitude of the transmitted wave. Values of R and 7" will be determined.



Insertion of condition (5) to equation (4) and using of (15) leads us to the differential equation for ¢”:
DA3GY + (1 — p)AP” — k2" =0, z,y € P (18)

which is valid under the platform. For the open fluid surface we have (14).
Transition conditions written in the following form
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The deflection of the platform we represents as a superposition of exponential functions in such forms:
for the strip

w(x,y) = Z (a a4 ] e mnz)eikoysing 0)

n

and for the semi-infinite platform

w(az,y) — Z anemnw—i-ikoysinﬁ (21)
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for 0 < f < fer < /2 at z = 0 where ’amplitudes’ ay, b, and reduced wave numbers &, will be determined later for
angle of incidence smaller than a critical angle, which will be described below. For the description of the connection
between platform deflection and potential we use first condition of (3) for IWD and FWD and (15) for SWD.

We define k,, as
kin = /KM — kZsin® B (22)

where k(™ are roots of dispersion relation which is varied for different cases:

(Dk* — p+ 1)k = +ko for IWD (23)
(Dk* — p+ 1)k tanh kh = ko for FWD (24)
(Dk* — p+ 1)K* = kj for SWD (25)

Taking into account for every case 3 roots ! which are physically realistic solutions for x and are situated in the upper
complex half-plane: positive real root £() and two roots in complex plane £?) and £(®) with equal imaginary parts
and equal but opposite-signed real parts. Also we determine a value of critical angle of incidence. Angle becomes
critical when x; (corresponded value to real positive root k(1) of dispersion relation) is equal 0. Then

sin B¢, = n(l)/k:o (26)

Boundary conditions are the same for all values of depth. For the strip we get 4 equations from boundary
conditions at both edges x = 0 and « = [ from zero moment and zero shear force conditions (6). For the semi-infinite
platform we have two boundary conditions at the edge z = 0.

Determination of ’amplitudes’ a,, and b,,. We consider for IWD and FWD the zeros of the dispersion relation for
the water surface. We insert (20) in (11) and obtain two linear relations:
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where C =1 for IWD and C = K /(K (1 — Kh) + k%h) for FWD. Together with the boundary conditions we have 6
equations. The solution of this system gives us values of deflection and reflection and transmission coefficients also
if we compute contribution of pole in region x < 0 and = > [ respectively. This is the solution for the strip. For the
semi-infinite platform we use (27) without b,-term and 2 boundary conditions.

Determination of ’amplitudes’ for SWD. Reflection R and transmission T' coefficients will be find at once. Here
we need 8 equations, 4 from boundary conditions we have already. Rest 4 equations can be obtained from transition
conditions (19) at both edges of the platform. Due to (16) and (17) we have at + =0 and at  =:
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Such way for the definition of 6 components of the deflection and coefficients of reflection and transmission we have
system of 8 equations. Deflection and reflection coefficient for the SIP can be obtained by same way also. From
transition condition (19) and (16) we obtain conditions (29) at the edge = 0 but without b,,-terms. After solving of
the system we obtain 3 components of the deflection and reflection coefficient for the SIP.

lin fact for FWD we can use n roots but here we use only three for exact comparison of solutions and results



4 Discussion of Results

We present some numerical results on this chapter and compare them for different cases of the water depth and
platforms.

In figure 1 we show comparison of the results for the strip deflection for different wavelengths. Results are shown
for three values of depth for zero angle of incidence. In figure 2 we compare the results for the deflection of the strip
and of the semi-infinite platform for same wavelength and depth. For each form of the platform results are presented
for 4 different values of incident angle. Also we compare reflection and transmission for SWD and for FWD cases.
These results are presented in figure 3, where R, is reflection coefficient for the semi-infinite platform. Wave energy
is conserved, up to a high degree of accuracy |R|* + |T'|? = 1.
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Fig.1 Results for the strip deflection for D/pg = 10°m*, h = 1,10,100m for A = 0.3 (a) and A = 0.5 (b)
w/¢ . . . . ‘, w/¢ . . . .
h h _ = 00
,,,,,,, B8 =15°
B =30°
““““ B = 45°
0 : A : : 0 : : A :
0 0.2 0.4 0.6 0.8 z/l 0 0.2 0.4 0.6 0.8 z/l

Fig.2 Results for the deflection for D/pg = 10°m*, h = 10m, A = 0.5 for the strip (a) and for the SIP (b)
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Fig.3 Reflection and transmission coefficients for D/pg = 10°m*, 8 = 0° for h = 1m (a) and h = 100m (b)
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Abstract Title: | A VLFP on Infinite, Finite and Shallow Water

(Or) Proceedings Paper No. : | 01 | Page : | 001
First Author : Andrianov, A.L
Discusser :

Hiroshi Kagemoto

Questions / Comments :

It is assumed that the thickness is zero because the platform is thin. However, it is not
that obvious that you can justify the assumption.

It is thin compared to its horizontal dimension, but the draft may be comparable to or
even larger than, say, the wave amplitude.

Especially, if you are concerned about the reflection and transmission of waves, this
fact may be relevant.

Author’s Reply :
(If Available)

We agree with the comment in general. But in our article we
study the situation when the wave height (amplitude) is larger than the draft
of the platform. Therefore we make the assumption that the thickness of the
platform is zero and use the thin plate theory for the solution.
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Discusser :

Mike Meylan

Questions / Comments :

You only use 3 roots of the dispersion equation. This makes the solution approximate
for finite and infinite depth. Why do you make this approximation?

Author’s Reply :
(If Available)

First of all, we notice that for finite water depth we use 3 roots of the dispersion
equation for comparison with infinite and shallow water results only. In the general
case we may use more (for instance, 20) modes.

We show below the comparison of the strip's deflection results for different numbers
of roots (wave modes). We can say that the lower graph represents the infinite depth
case (wavelength is 30m while depth is 200m) with the relevant behaviour of the
platform. Here the difference between the results is large near the edges of the strip.
The upper and middle graphs correspond to the finite depth case (wavelengths are
150m and 90m respectively). Now we have quite a small difference between the
results, especially in the upper graph.
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