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1.1.1.1. INTRODUCTION INTRODUCTION INTRODUCTION INTRODUCTION    

The linear and nonlinear fluid motions has been widely studied by using Boundary Element 
Method (BEM)(Brebbia (1978)), which has a merit of reducing the dimensions by one and it is 
applicable even for the infinite domain problem. When BEM is used for the calculations of the 
velocity potential and the hydrodynamic forces, it is important to get a precise value in the 
boundary integral of the functions of 1/r, in which r is the distance between elements. It is difficult 
to get the analytical solution for the three-dimensional (3D) problem and the numerical method 
such as Gaussian integration will be applied to the integral of the function 1/r, in which the 
singular integration on the boundary should be paid attention. In a tank with the internal 
structure, the distance r  between elements on both sides of the internal structure will tend to 0, 
when the thickness of the plate t tends to 0. So it is very difficult to avoid the numerical error in 
the integral of the function 1/r. It has shown the errors between the analytical solution and the 
numerical integral in the paper of Nishino et al.(1999). 

In this paper, the sloshing in 3D tank with the internal structure and the vibration of the 
internal structure in 3D tank are discussed by extending the basic BEM to the multiple domain 
problems. The fluid motions in a tank with the internal structure that is subjected to the forced 
oscillations and the dynamic pressure distributions on the thin vibrating internal structure are 
shown. Some of the computed results are compared with the ones in the published paper. It 
indicates that they agree well each other and the present method is effective. 

2.2.2.2.    MULTIPLE DOMAIN MULTIPLE DOMAIN MULTIPLE DOMAIN MULTIPLE DOMAIN ““““BEMBEMBEMBEM”””” 

As shown in Fig.1, we assume that the whole 
domain composes of the two connected domains, 
I and II with the imaginary boundary Γi. When 
the outside boundaries of the domain I and II 
are expressed by Γ1 and Γ2 respectively, the 
domain I is surrounded by Γ1 and Γi, and the 
domain II by Γ2 and Γi. 

 
 
 
 
 
 

Fig.1 Multiple domain system 
We assume the fluid is incompressible and the flow irrotational so that there exists a velocity 

potential φ that satisfies the Laplace equation, in the whole fluid domain, and the velocity 

potential is defined as q�=∇φ ( q�  is the fluid velocity). 

On the outside boundaries there are two kinds of conditions. One is expressed by the value of the 
velocity potential on the part of the outside boundary, i.e. φ=known. Another is the value of the 
normal differentiation of the velocity potential on the remaining outside boundary, ∂φ/∂n=known. 

On the imaginary boundary, the flow velocity and its potential at any point is the same as the 
one in the adjacent domain, so that we obtain the following conditions on the imaginary boundary, 
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According to the Green’s formula, the velocity potential φ can be written as, 
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where r is the distance between the source and field point, cp and φp is the radian measure and the 
velocity potential at the node P on the boundaries, S is the whole boundaries in the domain. 

By using the expression of vector and matrix, it can be written as: 
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where matrices [H] and [G] consist of constants determined by Green’s function and the mesh 
system of the boundary discretization method, vectors {φ} and {∂φ/∂n} are the values at the nodes 
on the boundaries. 

By using the domain name for the superscript and the variables on the boundary for the 
subscript, the following matrix equation will be obtained, 
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where the subscript “i” means the variable of the nodes on the imaginary boundary Γi, and “o” 
denotes the variable of the nodes on the outside boundaries Γ1 and Γ2 and 
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It is obvious that the velocity potential can be obtained by solving Eq. (4).    

3. SLOSHING IN 33. SLOSHING IN 33. SLOSHING IN 33. SLOSHING IN 3DDDD TANK WITH INTERNAL STRUCTURE TANK WITH INTERNAL STRUCTURE TANK WITH INTERNAL STRUCTURE TANK WITH INTERNAL STRUCTURE    

We consider a 3D tank that is subjected to forced oscillations and assume that the fluid in a tank 
is inviscid and incompressible and the flow is irrotational in the whole domain. 

 
 
 
 
 
 
 
 

Fig.2  3D sloshing model and fluid domains        Fig.3  Triangle mesh system 

As shown in Fig.2, for simplicity, we assume the tank is only a forced sway in y direction. The 
governing equation satisfies the 3D Lapalace equation. On the free surface, the dynamic and 
kinematic boundary conditions can be described by Eqs. (5) and (6), 

µφφφφφ +++
��

�
�
�

��

�
�
�

�
	



�
�




∂
∂+��

	



��
�




∂
∂+�

	



�
�




∂
∂−=

∂
∂ gzya

zyxt y

222

2
1                                        (5) 

nt
ny ∂

∂=
∂
∂ φς                                                                            (6) 

where µ is the viscosity coefficient. On the rigid boundaries in the whole domain are all zero. The 
time-stepping technique and the center finite difference schemes with respect to time are used to 
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obtain the velocity potential at the node on the nonlinear free surface:  
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where dφ/dt= ∂φ/∂t+|∇φ|2 and dς/dt is substituted by ∂ς/∂t. From Eq. (7), the free surface profile 
and its cooresponding velocity potential at every time step will be obtained. 

In order to verify the numerical method and the program of this study, the numerical 
calculations for the sloshing problem have been carried out and the results are compared with the 
one of Shinkai et al.(1987) which was computed by MAC (Mark and Cell) method. We used the 
same tank as Shinkai’s having the breadth and length: a=40cm, the water depth of 14cm fitting 
with the 4cm internal structure on the centerline of the bottom. The tank is subjected to the forced 
sway oscillations in which the period is 1.0 second and the amplitude is 1.0cm. For the start of the 
computation, it is assumed that the tank is set to be horizontal and the water is at rest. The 
computed free surface elevations are shown in Fig. 4 and Fig. 5. The former gives the free surface 
profile in the tank at time t=2.40 second and the latter illustrates the time histories of the free 
surface elevation at the tank side on the centerline (x=a/2). In Fig. 5 the solid line denotes the 
result of present method, symbol is Shinkai’s which is compared by using two dimensional method 
(Shinkai et al.(1987)). The periodic line is close to the symbols and it indicates the present method 
is effective. 

 
 
 
 
 
 
Fig. 4  Free surface profile in the tank        Fig. 5  Comparison of the free surface elevations 

at t=2.40                                     at the tank side on the centerline (x=a/2) 

4. VIBRATION OF INTERNAL STRUCTURE IN 3D TANK4. VIBRATION OF INTERNAL STRUCTURE IN 3D TANK4. VIBRATION OF INTERNAL STRUCTURE IN 3D TANK4. VIBRATION OF INTERNAL STRUCTURE IN 3D TANK    

We consider a 3D tank with an internal structure that is subjected to a periodical forced 
oscillation with an infinitely high frequency. It is assumed that the fluid is incompressible and the 
flow irrotational so that there exists a velocity potential φ that satisfies the Laplace equation. Since 
the frequency ω→∞,  

0=φ    on the free surface.                                                            (8) 

 
 
 
 
 
 
 
 
 
 

Fig. 6 Pressure distribution due to a unit acceleration of the internal structure 
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On the tank wall and internal structure, ∂φ/∂n=-Vy and on the tank bottom ∂φ/∂n=0  (n is the 
normal to the boundaries).From the Bernoulli’s equation, the pressure can be expressed as, 

t
p

∂
∂−= φρ    (ρ: fluid density)                                                          (9) 

By the integration of Eq. (9) on the rigid boundaries, the hydrodynamic forces acting on the 
boundaries can be obtained.  

For the numerical calculations, we choose the case of Nishino et al. (1999), in which the 
dimensions of the tank and the internal structure are as shown in Fig. 2. Both the breadth and 
length of the tank: a=1.0m and the fluid depth is 0.50m. The internal structure locates at y=0.40m 
and it has a height of 0.30m. Here we also used the method of the triangle element mesh system to 
discretize two domains of the tank, which is similar to section 3333. It is assumed that the internal 
structure oscillates in the fluid with unit acceleration in its normal direction. Fig. 6 shows the 
pressure distributions on the centerline (x=a/2) due to unit acceleration computed by using the 
triangle element with linear shape function. It also gives the pressure gap distribution on the thin 
internal structure and the pressure on the bottom of the tank. In the figure, the analytical solution, 
the results of the basic BEM and TPBEM (Thin Plate BEM by Nishino et al. (1999)) are shown by 
the symbols of circle and triangle respectively. The result of the present method is very close to the 
analytical solution and the one of TPBEM. 

 

5.5.5.5.    DISCUSSIONSDISCUSSIONSDISCUSSIONSDISCUSSIONS    

Nonlinear simulations have been carried out for the fluid motions in a tank with internal 
structure that is subjected to the forced sway oscillation. In order to avoid the numerical error 
which will be appeared in the integral on the internal structure, the basic BEM has been extended 
to the multiple domain problems. The computer program has been developed and applied to the 
simulation of the sloshing phenomena. Some of the computational results are compared with the 
ones in the published paper and it indicates that they agree well each other and the present 
method is effective. 

The multiple domain BEM has been also applied to the vibration of the internal structure in 
contact with the water. From the comparison of the solutions among the basic BEM, TPBEM and 
the analytical ones, the present method agrees well with TPBEM and analytical solutions. It is 
also expected that the present method is a useful tool for the evaluation of the added mass in the 
fluid-structure interactive vibration. 
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