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The classical linearised equations and boundary conditions governing water waves and their
interaction with obstacles permit few explicit analytical solutions. The exceptions include Have-
lock’s 1929[5] solution for a vertical wavemaker and the solution derived from this by Ursell in
1947[17] for the scattering of two-dimensional water waves by a thin partly-immersed barrier in
deep water. Susequently a number of authors, including Mei[12] and Porter D.[15] showed that
an explicit analytical solution was possible for the scattering by or radiation from, any number
of thin vertical barriers positioned on the same vertical line.
Later Levine & Rodemich[8] showed that the scattering by a pair of identical parallel partly-
immersed vertical barriers could also be solved explicitly but the usefulness of their solution was
restricted by its complexity. In contrast the simpler case of a pair of identical parallel vertical
barriers extending indefinitely into the fluid from a point beneath the free surface was solved by
Jarvis[6] and useful results on the transmission and reflection coefficients obtained.
In 1972 Evans & Morris[3] revisited the case of the surface-piercing pair of barriers and utilising
a powerful variational method were able to get accurate results for the scattering coefficients. In
particular they were able to prove that for certain spacings, depths of immersion and incident
wave frequency, a wave could be completely reflected by the pair of barriers, the first time this
had been observed in classical water wave theory. The same phenomenon did not hold true for
the submerged pair of barriers although in both cases the more common phenomenon of complete
transmission did occur.
The result of zero transmission was subsequently confirmed by Newman[13] using matched
asymptotics for closely-spaced barriers and by McIver[11] for finite water depth using matched
eigenfunction expansions. Finally Porter R. & Evans[16] confirmed McIver’s results using an
accurate complementary variational approach.
The importance of the zero transmission result to Evans & Morris lay in the possibility of de-
signing efficient breakwaters although the closeness in frequency of complete transmission for
the same barrier configuration ruled this out as a practical breakwater in mixed seas. Further
examples showed that zero transmission does not require a pair of separated surface-piercing
bodies for it to occur. Thus a careful scrutiny of the curves of transmission published by Haren
& Mei in 1979[4] in their paper on the scattering by a Salter duck wave-energy device shows that
it occurs here also whilst more recently Parsons & Martin[14] have shown numerically that it
occurs in the scattering of waves by an inclined partly-immersed thin plate provided the plate is
not vertical.
Speculation over the question of the uniqueness or otherwise of the two-dimensional water wave
problem led to a revival in interest in zero transmission configurations. Thus Evans argued that
at that frequency and configuration an identical pair of barriers positioned at an appropriate
and sufficiently large distance from the first pair would totally reflect a wave incident upon them
from the direction of the other pair and that the reflected wave would itself be totally reflected
on reaching that pair and so on so that the net effect would be a standing wave between two
identical widely-spaced pairs of barriers and only a local evanescent field outside each pair. Such
a motion would provide an example of a non-uniqueness as any multiple of this solution could
be added to the solution to the scattering of a wave incident on the two pairs of barriers from
the region exterior to both pairs.
The uniqueness question was put to rest in 1996 on the publication by McIver M.[10] of an
explicit example of non-uniqueness obtained by superposing two identical line sources in the free



Figure 1: Curves of zero transmission past 2 barriers. Pairs of numbers next to curves indicate
ratios of barrier widths to channel width d. b is the barrier spacing and k is the wave number
related to the radian frequency through the relation ω2 = gk tanh kH where H is the depth of
water in the channel.

surface at a spacing which cancelled their net far field. She showed that certain streamlines of
the resulting field entered the sources from above the free surface and could be replaced by pairs
of rigid bodies entirely enclosing the singularities with an open free surface between them. The
rigid bodies all have the property that they intersect the free surface non-vertically a property
shared also by the Salter duck thus adding weight to the Evans argument but the authors are
not aware as to whether a single McIver body is capable of demonstrating zero transmission.
Recently Kuznetsov et al[7] have solved the four-barrier problem numerically using the varia-

tional approximations described by Porter & Evans and have confirmed that there are solutions
describing standing waves or trapped modes between the pairs of barriers with just a local de-
caying field outside the pairs and that these solutions do indeed occur close to the spacings and
frequencies predicted by the wide-spacing arguments of Evans.
The existence of trapped modes in an infinite wave channel containing a vertical bottom-mounted
surface-piercing circular cylinder was first proved by Callan et al[1] and their relevance to the
large forces on large finite arrays of identical cylinders was pointed out by Maniar & Newman[9]
at a previous Workshop. The existence of trapped modes about an arbitrary cross-sectional
cylinder in a channel was proved by Evans et al[2]. In all cases the condition satisfied on the
centre-line was the Dirichlet condition of the vanishing of the potential, corresponding to a fun-
damental sloshing motion.
In the present work we obtain for the first time solutions describing trapped modes for bodies
on the centre-line of an infinite channel which satisfy a Neuman condition on the centre-line and
which can therefore be accessed by an incident plane wave from infinity. The method is a direct
extension of the ideas on zero transmission described above.



Thus we first show that two identical vertical thin plates with axes perpendicular to the walls
of the channel can if suitably spaced, when partly spanning the channel, exhibit zeros of trans-
mission at certain frequencies. Figure 1 gives an example of how these frequencies depend upon
spacing and span.
Armed with this information it will be shown that trapped modes exist in the interior fluid re-
gion between this pair of plates and its mirror image at suitable spacings and frequencies which
approach the values corresponding to zero transmission as the spacing between the two pairs
increases. The relevance of the results to large double arrays of breakwaters and the forces they
might experience will be discussed. Curves showing the variation of the trapped mode frequencies
with the geometry of the configuration will be presented. An extension to the case of Rayleigh-
Bloch waves between a double row of identical parallel plates with gaps will be discussed showing
for the first time the existence of such waves at wave numbers above the fundamental wavenum-
ber associated with Rayleigh-Bloch waves.
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