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1. Introduction

The three-dimensional (3D) problem of blunt-body impact onto a free surface of an ideal and incom-
pressible liquid is considered. During the initial stage of impact the ow region is divided into three parts:
(i) outer region, (ii) jet root region and (iii) jet region. In the outer region, the ow is three-dimensional. It
is described within Wagner approach. Under the classical assumptions of linearization, this approach leads
to a mixed boundary-value problem for the velocity potential in the lower half-space. The boundary of the
half-space consists of two parts: the liquid free surface and the wetted surface of the body. These parts are
separated by the contact line which varies in time. Position of the contact line is obtained from the so called
Wagner condition, which implies continuous joining of the free surface and the surface of the entering body.

Wagner theory is formally valid during initial stage, when the penetration depth of the entering body
is much smaller than the dimension of its wetted part. Close to the contact line, the theory fails since
both the liquid velocity and the hydrodynamic pressure have singularities along this line. The singularity
is yet integrable and the force can hence be calculated. However, in order to get uniformly valid pressure
distribution and to improve prediction of the hydrodynamic force on the entering body, a solution which
describes details of the ow close to the contact line, must be introduced.

Such a solution was derived by Wagner (1932) in two-dimensional case. The solution was matched with
that in the outer ow region. An in�nite length of jet was theoretically predicted. For 3D bodies we must
even deal with a jet sheet. In order to obtain shape of this jet sheet and the ow inside it, the jet region
has to be also considered. The jet solution has then to be matched with that for the jet root region. In the
2D wedge entry problem the jet solution was derived by Howison et al. (1991). It was shown that the ow
in the jet region is governed by the shallow-water equations and the jet is wedge-shaped. This technique
was extended by Korobkin (1994, 1997) to the case of a parabolic contour entering a compressible liquid.
Using both the known liquid ow in the jet region and the geometry of this region, the energy of the jet was
evaluated in both plane and axisymmetric cases. It was shown that during the impact of two-dimensional
or axisymmetric blunt bodies onto a compressible liquid free surface at a constant velocity, half of the work
done to move the body goes to the main ow kinetic energy and the other half is taken away with spray
jets. The jets are very thin at the initial stage but the jet velocity far exceeds the velocity of the entering
body.

This result was con�rmed by Molin et al. (1996) using another method for 2D problem of impact onto
an incompressible liquid surface. This method is based on the concept of energy ux evaluated through the
jet root region. The main advantage of this approach is that the ux can be directly determined from the
solution in the jet root region and there is no need to deal with the ow in the jet region and its geometry.
This approach is used in the present paper to evaluate a part of the energy taken away with the jet in
three-dimensional impact problem. It will be shown that, in order to evaluate the jet energy, we need only
to know the asymptotic behaviour of the outer solution close to the contact line.

The outer solution for an arbitrary shape of three-dimensional entering body is still not available even
within Wagner theory. We restrict the study to elliptic contact line, for which the velocity potential is
known and the so called inverse Wagner problem has solutions (see Scolan & Korobkin 2001a). In this
frame, shapes of practical interest can be generated (see Scolan & Korobkin 2000).

It is shown that the outer ow { even singular { is approximately two-dimensional close to elliptic contact
lines. Therefore it makes it possible to use the planar nonlinear solution by Wagner (1932) for the jet root
region. By matching locally the three-dimensional outer solution with the two-dimensional jet root solution,
we arrive at a uniformly valid asymptotic description of the pressure distribution. In the case of elliptic
contact region this combined solution is used to evaluate the energy distribution throughout the ow domain
and to prove that the energy is equally transmitted to the bulk of the uid and to the spray jet in the case
of constant velocity of the entering body.

2. Asymptotics of the outer solution close to the contact line

Within Wagner theory the wetted part of the entering body is approximated by an equivalent expanding
at disc D(t), the boundary conditions are linearised and imposed on the initially undisturbed liquid level
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z = 0, the liquid ow caused by the impact is assumed irrotational and is described by the velocity potential
�out(x; y; z; t), where z < 0. It is important to notice that the liquid ow in the Wagner approximation
depends on both the shape of the contact region D(t) and the body velocity but not directly on the body
shape. We assume that the Wagner problem has been solved already so that the region D(t) and the
body velocity U(t) are prescribed. Moreover, we restrict ourselves to the case of elliptic contact regions,
D(t) = fx; y j x2=a2(t)+y2=b2(t) < 1g, with the planar and axisymmetric problems representing the limiting
cases. Here a(t), b(t) and U(t) are arbitrary positive functions, which satisfy the following inequalities
a(t) � b(t), U(t)� _a(t) and b(0) = 0 according to the basic assumptions of Wagner theory. Dot stands for
the time derivative.

The velocity potential of the ow initiated by impact of an expanding elliptic disc is given as
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a�2b�2�3 + L2�
2 + L1�� z2 = 0; (2)

L1(x; y; z; t) = 1� x2

a2
� y2

b2
� a2 + b2

a2b2
z2; L2(x; y; z; t) =

1

a2
+

1

b2
� x2 + y2 + z2

a2b2
:

This form of the velocity potential is suitable for analysis of the behaviour of the outer solution near the
contact line �(t) = fx; y j x = a(t) cos�; y = b(t) sin�; 0 � � < 2�g.

It is convenient to introduce the local coordinate system (P; x1; y1; z1), where x = a cos� + x1, y =
b sin�+ y1, z = z1 and (x2

1
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in a small vicinity of the contact line. It is seen that within the coordinate system (P; �; �; �), which is
obtained by rotation of the system (P; x1; y1; z1) counterclockwise at the angle � = tan�1[(a=b) tan�] so
that x1 = � cos � � � sin �, y1 = � sin � + � cos � and z1 = �, the ow is approximately two-dimensional,
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It can be veri�ed that the axes P� and P� are in normal and tangential directions to the contact line,
respectively. Therefore, near the contact line the ow in the tangential direction is negligible compared to
the ow in the normal direction. The local ow pattern is given by (3) and is similar to that in the planar
case. This two-dimensional ow can be matched to the solution in the jet root region established by Wagner
(1932) for the planar impact problem.

3. Parameters of the jet in 3D impact problem

The ow in the jet root region is considered within the moving coordinate system (P; �; �; �), wherep
�2 + �2 + �2=a � 1 and the local velocity potential �root does not depend on the tangential coordinate

�. The ow is approximately quasi-stationary in the leading order as the size of the jet root region tends
to zero, and is characterized by the jet thickness Æ(�; t) and the velocity V (�; t) of the uid in the jet.
The dynamic boundary condition shows that the jet velocity V (�; t) is equal to the normal velocity of the
point P , which is the origin of the moving system. The 2D jet root solution by Wagner (1932) provides, in
particular, the asymptotics of both the velocity potential and the pressure
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in the far �eld, where j�j=Æ � 1, j�j=a� 1 and � = 0. Expressions (4) have to be considered as the "outer"
asimptotics of the "inner" solution and matched to the "inner" asymptotics (3) of the "outer" solution.
Comparing asymptotic formulae (3) and (4), we obtain the jet thickness as
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The jet velocity V (�; t) is equal to the normal velocity of the moving contact line, position of which is
described by the equation G(x; y; t) = 0, where G(x; y; t) = 1� x2=a2(t)� y2=b2(t). We obtain
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where the upper dot denotes the time derivative and r is the gradient operator. Equations (5) and (6) lead
to the equality
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used below to evaluate the ux of kinetic energy through the jet.

4. Repartition of kinetic energy

It is well-known that the energy conservation law is not satis�ed within classical Wagner theory. In
general case (see Scolan & Korobkin 2001a),
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where T (t) is the kinetic energy of the liquid ow in the outer region, T (t) = 1

2
Ma(t)U

2(t), A(t) is the work
done to oppose the hydrodynamic force on the entering blunt body, and Ma(t) is the added mass of the
at disk D(t). During the initial stage of the water impact, the added mass of the expanding at disk D(t)
increases, dMa=dt > 0. Therefore, T (t) < A(t), which is usually considered as an indication that a part of
the energy is "lost" during the impact. It is proved below that the ux of energy in the right-hand side of
equation (8) is equal to the ux of kinetic energy through the jet in the case of elliptic contact lines.

The total velocity of uid in the jet Vf (�; t) is equal to the jet velocity V (�; t) plus the normal velocity
of the moving contact line, which is Vf (�; t) = 2V (�; t). The part of the kinetic energy �Ej(�; t), which
leaves the main ow region through the jet root region of small length �` during small time interval �t, is
given as
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where � is the liquid density and �` = �
1
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kinetic energy through the 3D jet in the form
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where K(e) and E(e) are the complete elliptic integrals of �rst and second kind, respectively.
The added mass Ma(t) of the elliptic disk D(t) is given as Ma(t) = 2��a2b=(3E(e)), with its time

derivative being
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In order to derive equation (12), the following formulae were used
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Substituting (11) into (10) and comparing the result with (12), we obtain
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where the right-hand side is the same as in (8). Equation (8) provides after its integration with respect
to time

A(t) = T (t) +Etot
j (t):

Therefore, the energy conservation law is hold within the 3D Wagner theory if the jet energy is taken
into account. It should be noted that this result has been proved only for the case of elliptic contact lines.

It is seen that the energy is equally transmitted to the bulk of the uid and to the spray jet, T (t) = Etot
j (t),

if and only if the velocity of the entering body is constant. If the body velocity is not constant, we �nd
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where Ma(�) � 0 and U(�) > 0. Therefore, main part of the energy is transmitted to the bulk of the uid,

T (t) > Etot
j (t), if the body velocity increases, _U(t) > 0, after the impact instant. Correspondingly, the main

part of the energy is transmitted to the jet , Etot
j (t) > T (t), if the body velocity decreases, _U(t) < 0, after

the impact. The velocity of the entering body decreases, in particular, in the case of free fall of the body
onto the liquid free surface.

5. Conclusion

As soon as the matching of the jet root and main ow solutions is performed along the contact line, we
know all necessary quantities to evaluate the pressure �eld. This is done in Scolan and Korobkin (2001b).
Two pressure �eld formulations are considered. Either the composite solution by Zhao and Faltinsen (1992)
or the "second order" solution by Cointe (1987) can be used. The force is calculated from the numerical
pressure integration all over the wetted area. For the sake of brevity the formulations and results are
not presented here. Comparisons are made with results by Zhao and Faltinsen (1997, 1998) which are
considered as more exact. For cone and circular paraboloids (as a sphere), it is shown that the "second
order" formulation of the pressure provides a force in good agreement for cone aperture less 20o and before
the maximum of force is reached for the sphere. Experimental data concerning the pressure �eld acting on
an elliptic paraboloid should be also obtained soon.
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