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1. INTRODUCTION

Based on the desingularized Green's formula of Landweber & Macagno (1969), a method has been developed to

solve the radiation problem of a 
oating body in the time domain. In this method, the singularity in the Rankine

source of the Green function is removed. The body surface is mathematically represented by Non-Uniform Ra-

tional B-Spline (NURBS) surfaces. Thus, the integral equation can be globally discretized over the body surface

by Gaussian quadrature. We call this method as the panel-free method (PFM). The accuracy of PFM based on

the NURBS surface representation was demonstrated by its application to a classical problem of uniform 
ow

past a sphere. Computed impulse response function, added-mass and damping coeÆcients of a hemisphere at

zero speed are compared with other published results.

2. MATHEMATICAL FORMULATION

For the radiation problem of a 
oating body with forward speed U0 in the time domain, the potential function,

�(P ; t) can be represented as a source distribution as follows:
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where �Sb is the mean wetted surface, � denotes the waterline, n1 is the x-component of the inner unit normal

vector n which points into the body surface, and the time-dependent Green function is given by (Wehausen &

Laitone 1960, Eq. (13.49) ):
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where r and r1 are distances between P (x; y; z) and Q(x0; y0; z0), and P and the image point Q0 of Q, R =p
(x� x0)2 + (y � y0)2, J0 is the Bessel function of the zeroth order, and Æ(t � �) and H(t � �) are the delta

function and the Heaviside step function, respectively. The source strength, �, can be solved from
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For a 
oating body, if the waterline integral is omitted, Eq.(4) can be desingularized as follows:
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The LHS of Eq.(5) is known from the body boundary condition, and G1(P;Q) = �1=(4�)(1=r + 1=r1) and

G2(P;Q) = 1=(4�r1). The source strength can be obtained by solving Eq.(5). Based on the work by Landweber

and Macagno, the non-singular representation for the velocity potential can be derived as follows:
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where 
(P ) is the source distribution on �Sb which makes the body surface an equipotential surface of potential

�0 and satis�es the homogeneous integral equation
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Equation (7) can be desingularized in a similar way as Eq.(5), and 
(P ) can be solved by �nding the eigenfunction

of @K(P;Q)=@n(P ) with the eigenvalue equal to 1, where K(P;Q) = 1=(2�)(1=r + 1=r1). The potential, �0, is

constant in the interior of the equipotential surface. It can be computed at the origin by �0 = �

R
�Sb

(Q)(1=jQj+

1=jQ0j)dS, where jQj and jQ0j denote distances between Q and the origin, and Q0 and the origin, respectively.

3. NUMERICAL IMPLEMENTATION

It is assumed that Np patches are used to describe a body surface. Each patch can be represented by a NURBS

surface (Farin, 1991). Let P (x(u; v); y(u; v); z(u; v)) be a point on a patch; x; y and z denote the Cartesian

coordinates; and u and v are two parameters for the surface de�nition. On a NURBS surface, P (u; v) can be

de�ned as follows:
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where wij are the weights; Ci;j form a network of control points; and Ni;p(u) and Nj;q(v) are the normalized

B-splines basis functions of degrees p and q in the u and v directions, respectively.

Since Eq.(5) is singularity free, it can be discretized by directly applying the Gaussian quadrature and the

trapezoidal time integration scheme. The Gaussian quadrature points are arranged in the computational space,

rs, then their corresponding coordinates, normals, Jacobian in the physical space can be obtained based on

Eq.(8). Therefore, the Eq.(5) can be written as
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where Nj and Mj are the number of Gaussian quadrature points in the u- and v-directions on the jth patch.

Pi = Pi(un; vm); n = 1; :::Ni;m = 1; :::Mi and Qrs
j = Qj(ur; vs) are the position vectors of Gaussian quadrature

points on the ith and jth patches in the physical space, respectively; npi and nqrsj are the corresponding unit

normals; wr and ws are the weighting coeÆcients in the u and v directions; Jrsj is the Jacobian of Qrs
j ; t is the

time; and �t is the time step, tk = k�t and t = kt�t, where k and kt are the time constants at any instant and

for the total time, respectively. It can be seen that the algorithm is only controlled by the number of Gaussian

quadrature points.

4. NUMERICAL RESULTS

Since the singularity occurs only in the 1=r term, it is important to validate the desingularization of the integral

equation with the 1=r term only before it is applied to the time-domain integration. The numerical scheme was
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applied to the problem of uniform 
ow (U = �1:0) past a sphere surface (R = 1:0). Due to the symmetry, only

one-half of the surface was considered. In Figure 1, the dashed lines represent the control net of NURBS with 5x5

control points on one of patches (Np = 2). The solid meshes are the surface of one-quarter of the sphere generated

by the control net. The disturbed velocity potentials at the Gaussian quadrature points were computed using

both NURBS and analytical expressions of the surface. The numerical testing was also conducted to investigate

the convergence of numerical solution to the number of Gaussian quadrature points (NxN) over the hemisphere.

The root-mean-squared (RMS) errors of computed velocity potentials based on the analytical expression and the

NURBS representation of the surface are shown in Figure 2. It is shown that the computed velocity potentials

converge to the analytical solution as the number of Gaussian quadrature points increased. The RMS error of

the solution based on the NURBS representation is less than 1% when 10x10 Gaussian quadrature points are

applied.

The panel-free method was applied to compute the response function for a hemisphere (R=5.0m) in heave.

Figure 3 shows the nondimensional response function, K33(t)=(�r)
p
R=g, versus nondimensional time, t

p
g=R,

for di�erent Gaussian quadrature points used on the hemisphere, where R is the radius of the sphere and r is

the volume displacement. The time step was chosen as 0.05 second. The circle points give the analytic solution

of Barakat (1962) obtained by the Fourier transformation from his frequency-domain results.

The nondimensional response function for the heaving hemisphere was also computed using di�erent time steps

with 16x16 Gaussian quadrature points. As shown in Figure 4, PFM is insensitive to the size of time steps.

Figure 5 and Figure 6 present the added-mass and damping coeÆcients versus the nondimensional frequency

for the hemisphere in heave. The numerical results were obtained by Fourier transformation from the response

function using 16x16 Gaussian points as shown in Figure 3, and the analytical results were from Barakat (1962).

Also in these �gures, the frequency, the added-mass and the damping coeÆcients are nondimensionalized as

!2R=g, A33=(�
2
3
�R3) and B33=(!�

2
3
�R3), respectively.

5. CONCLUSIONS

The panel-free method has been developed to solve the radiation problem of a hemisphere at zero speed in the

time domain. The boundary integral equation in terms of source strength distribution is desingularized so that

the Gaussian Quadrature can be directly applied to the exact body surface. Compared with the panel method,

the advantages of PFM are: a) less numerical manipulating, since panelization of a body surface is not needed; b)

more accurate, since the assumption for the con�guration of source strength distribution as in the panel method

is not needed and no approximation of surface geometry is involved; c) the Gaussian quadrature points, and their

respective Jacobian and normals on the surface can be accurately computed from the NURBS expression; and

d) the accuracy of the solution is controlled only by the number of Gaussian quadrature points. This method is

currently being applied to the computation of ship motions in the time domain. The wave di�raction e�ect is

also considered.
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Figure 1: Sphere surface and control points
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Figure 2: Convergence of numerical solution to the num-

ber of Gaussian quadrature points
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Figure 3: Nondimensional heave response function

on a hemisphere versus nondimensional time (�t =

0:05s)
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Figure 4: Nondimensional heave response function on

a hemisphere versus nondimensional time (16x16 Gaus-

sian points)
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Figure 5: Nondimensional added-mass for a hemi-

sphere in heave versus nondimensional frequency

(�t = 0:05s, 16x16 Gaussian points)
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Figure 6: Nondimensional damping coeÆcient for a

hemisphere in heave versus nondimensional frequency

(�t = 0:05s, 16x16 Gaussian points)
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