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1 Introduction

If a hydroelastic problem is linear the time-dependent motion can be found using spectral theory, at least theoretically.
However the spectral theory for linear hydroelasticity has not been developed, even for the simplest cases. For example,
the work of [1] which presented a method to determine the scattering frequencies for hydroelastic problems did not
develop any spectral theory. This has meant that spectral methods to solve the time-dependent motion, such as [4], have
only solved for the motion is restrictive cases.

In this paper the spectral theory for a simple hydroelastic problem, the two dimensional thin plate floating on shallow
water, is developed. This work, while it has practical applications, primarily aims to motivate the development of a
spectral theory for more complicated hydroelastic problems. Two separate methods are developed, both based on a
special inner product which represents the energy of the plate-water system. The first method uses the single frequency
solutions as the eigenfunctions and the problem is solved by a generalised Fourier transform. The second method is
based on Lax-Philips scattering and calculates the solution by an expansion in modes. These modes represent the natural
frequencies of the plate-water system and include the decay due to the radiation of energy into the surrounding water.

2 Formulation: A Thin Plate on Shallow Water

A thin plate of shallow draft covers the region−b ≤ x ≤ b of shallow water of depth h. The mathematical description
of the problem follows from [5]. The kinematic condition is

∂tζ = −h∂2xφ [2.1]

where φ is the velocity potential of the water and ζ is the displacement of the water surface or the plate. The equation for
the pressure is

− ρgζ − ρ∂tφ =
!

0, x /∈ (−b, b),
D∂4xζ + ρ

!d∂2t ζ, x ∈ (−b, b), [2.2]

whereD is the bending rigidity of the plate per unit length, ρ is the density of water, ρ! is the density of the plate, g is the
acceleration due to gravity, and d is the thickness of the plate.We also have the free edge boundary conditions

lim
x↓−b

∂2xζ = lim
x↑b
∂2xζ = lim

x↓−b
∂3xζ = lim

x↑b
∂3xζ = 0. [2.3]

Non-dimensional variables are now introduced. The space variables are non-dimensionalised using the water depth

h, and the time variables are non dimensionalised using

"
h

g
. The non-dimensionalised variables are

x̄ =
x

h
, t̄ = t

"
g

h
, ζ̄ =

ζ

h
, and φ̄ =

φ

h2
#
g/h

.

In these new variables, ([2.1]) and ([2.2]) become

∂t̄ζ̄ = −∂2x̄φ̄ [2.4]

and

− ζ̄ − ∂t̄φ̄ =
!

0, x̄ /∈ (−b̄, b̄),
β∂4x̄ζ̄ + γ∂

2
t̄ ζ̄, x ∈ (−b̄, b̄),

[2.5]

subject to the boundary conditions

lim
x̄↓−b̄

∂2x̄ζ̄ = lim
x̄↑b̄
∂2x̄ζ̄ = lim

x̄↓−b̄
∂3x̄ζ̄ = lim

x̄↑b̄
∂3x̄ζ̄ = 0. [2.6]

The non-dimensional variables β and γ are given by

β =
D

ρgh4
and γ =

ρ!d
ρh
.

For clarity the overbar is dropped from now on. Following [3] we set the inertia term, γ∂2t ζ to zero since it is much
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smaller than ζ. This follows from the fact that d $ h and, since the water is shallow, the wavelengths (and hence the
frequencies) must be much greater than h so that ∂2t ζ $ ζ.

3 The self-adjoint solution method

In this section, a solution for the time dependent motion of the plate-water system is developed using the theory of
self-adjoint operators. We define a two-component variable U (x, t) by

U (x, t) =

$
φ(x, t)
iζ(x, t)

%
. [3.1]

Equations ([2.4]) and ([2.5]) are now converted to the following equation for U
1

i
∂tU = PU [3.2]

where

P =
$

0 1 + β (H (x− b)−H (x+ b))∂4x
−∂2x 0

%
andH is the Heavyside function. Equation ([3.2]) is also subject to the boundary conditions at the end of the plate given
by equation ([2.6]) and the initial condition

U(x, t)t=0 = U0(x) =

$
φ0(x)
iζ0(x)

%
. [3.3]

The operatorP is self adjoint in the Hilbert spaceHwith inner product given by the energy. The energy inner product
for the two vectors

U1 =

$
φ1
iζ1

%
and U2 =

$
φ2
iζ2

%
is

%U1, U2&H = %∂xφ1, ∂xφ2&+
&'
1 + β (H (x− b)−H (x+ b))∂4x

(
iζ1, iζ2

)
. [3.4]

The subscript H is used to denote the special inner product and the angle brackets without the H denote the standard
inner product

%f (x) , g (x)& =
* ∞

−∞
f (x) g∗ (x) dx.

Since P is self-adjoint the solution to ([3.2]) can be calculated using the eigenfunctions of P. There are two eigen-
functions for each eigenvalue λ ∈ R, a unit incoming wave from the left (x = −∞) denoted by Φ> and a unit wave
incoming from the right (x =∞) denoted byΦ<. The eigenfunctionsΦ>(λ, x) consist of the two components φ> (λ, x)
and iζ> (λ, x) given by

φ> (λ, x) =


e−iλx + S11 (λ) eiλx, x < −b,

6/
j=1

αje
µj(λ)x, −b < x < b

S12 (λ) e
−iλx, x > b,

[3.5]

and

iζ> (λ, x) =


λe−iλx + λS11 (λ) eiλx, x < −b,

−1
λ

6/
j=1

µj (λ)
2
αje

µj(λ)x, −b < x < b
λS12 (λ) e−iλx, x > b,

[3.6]

where µj (λ) are the six roots of the equation

βµ6 + µ2 + λ2 = 0 [3.7]

and the values of S11 (λ) , S12 (λ) , and αj are chosen so that φ> (λ, x) and ζ> (λ, x) satisfy the boundary conditions
([2.3]) and the continuity of φ and ∂xφ at x = ±b. Also, since S11 represents the amplitude of the reflected wave and
S12 represents the amplitude of the transmitted wave, conservation of energy requires that |S11|2 + |S12|2 = 1. The
eigenfunctions for the wave propagating from the right Φ< are found similarly.

Since the boundary conditions are symmetric we must have S22 (λ) = S11 (λ) and S12 (λ) = S21 (λ) . Also, the
scattering matrix

S(λ) =

$
S11 (λ) S12 (λ)
S21 (λ) S22 (λ)

%
[3.8]

is unitary as a consequence of the Lax-Philips scattering structure which will be discussed in section 4.
Equation ([3.2]) can be solved by a generalised Fourier transform based on the eigenfunctions of the operator P . The

eigenfunctions are orthogonal since P is self-adjoint and the normalising constant is determined by calculating the inner
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product of these eigenfunctions with themselves. These inner products are given by&
Φ> (x,λ1) ,Φ

> (x,λ2)
)
H = 4πδ (λ1 − λ2)λ21,&

Φ< (x,λ1) ,Φ
< (x,λ2)

)
H = 4πδ (λ1 − λ2)λ21, [3.9]

and &
Φ> (x,λ1) ,Φ

< (x,λ2)
)
H = 0. [3.10]

Using these eigenfunctions the solution to ([3.2]) subject to ([3.3]) is

U (x, t) =

* ∞

−∞

0
U0 (x) ,

Φ> (x,λ)

4πλ2

1
H
Φ> (x,λ) eiλtdλ [3.11]

+

* ∞

−∞

0
U0 (x) ,

Φ< (x,λ)

4πλ2

1
H
Φ< (x,λ) eiλtdλ.

4 The Lax-Philips Scattering Solution Method

In this section, a solution to the time-dependent motion of the plate-water system is developed using the Lax-Philips
scattering theory ([2]). This solution method will only solve for an initial condition which is zero outside the region
of water covered by the plate (|x| > b). The basic idea and consequences of the Lax-Philips scattering theory will be
outlined here for our specific problem. The Hilbert space H is decomposed into three subspaces called the incoming,
outgoing and scattering spaces. The incoming space, denoted by D−, consists of all waves travelling towards the plate,
either from the left or the right, as appropriate. The outgoing subspace, denoted by D+, consists of all waves travelling
away from the plate, either to the left or right, as appropriate. What remains is called the scattering region, and is denoted
by K. In our problem,K is nothing more than the potential and displacement under the plate.

We introduce a new operator B which describes the evolution of the plate in the absence of wave forcing. If we again
denote the motion of the plate by the two component vector U (x, t) ([3.1]) then the equation for the motion of the plate
in the absence of wave forcing is

1

i

∂

∂t
U = BU.

This means that B is the infinitesimal generator of the semigroup (dissipative evolution operator) given by restricting the
problem toK, i.e.,

eiBt = PK eiPt
22
K

where PK is the projection onto the subspaceK and the |K means that the input is restricted toK. Therefore eiBt is the
evolution of an initial condition which is zero outside K and which is subsequently restricted to K, i.e. the evolution of
the plate motion in the absence of wave forcing.

The solution to the non self-adjoint problem requires the eigenvalues and eigenfunctions of B, sometimes referred to
as scattering frequencies or resonances. The eigenvalues of B are found using the analytic extension of the scattering
matrix S (λ) ([3.8]) to C since the eigenvalues of B occur precisely at the singularities of S(λ). These singularities are
found by a complex integration search method to give a rough estimate and Newton’s method to determine their location
accurately.

The eigenfunctions of B associated with the eigenvalue λn are denoted by Φ+(λn, x), and those of B∗ (the adjoint of
B) associated with the eigenvalue λ∗n are denoted by Φ̂+ (λ∗n, x). That is,

BΦ+ (λn, x) = λnΦ+ (λn, x)
and

B∗Φ̂+ (λ∗n, x) = λ∗nΦ̂+ (λ∗n, x) .
The eigenfunction Φ+ (λn, x) is given by

Φ+ (λn, x) =

$
φ+ (λn, x)
iζ+ (λn, x)

%
=


6/
j=1

αje
µj(λn)x

6/
j=1

−αjµj (λn)
2

λn
eµj(λn)x

 [4.1]

where µj (λ) are the six roots of equation ([3.7])

βµj (λ)
6
+ µj (λ)

2
+ λ2 = 0.

The αj are determined by the condition that the waves are of unit amplitude and are outgoing at x = −b,
φ+ (λn,−b) = eiλnb, ∂xφ

+ (λn, x)
22
x=−b = iλne

iλnb,
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and the boundary conditions at the end of the plate ([2.3]) are satisfied. The eigenfunctions of B∗ are found similarly.
A biorthogonal system with respect to the energy inner product ([3.4]) is formed by the eigenfunctions ofB,Φ+ (λn, x) ,

and the eigenfunctions of B∗, Φ̂+ (λn, x). To normalise the biorthogonal system, the inner product of Φ+ (λn, x) and
Φ̂+ (λn, x) must be found and this can be calculated analytically. Once this has been accomplished the evolution of the
plate from some initial displacement U0(x) is given by

U (x, t) =
∞9

n=−∞
eiλnt

:
U0 (x) , Φ̂ (λn, x)

;
H:

Φ (λn, x) , Φ̂ (λn, x)
;
H

Φ (λn, x) [4.2]

where U0 (x) is the initial condition given by equation ([3.3]).

5 Summary

Two methods have been presented to solve the time dependent motion of a thin plate floating on shallow water. One
method was based on self-adjoint operator theory, and the other on Lax-Philips scattering. The Lax-Philips method only
solved the problem of a free plate and cannot be used to solve for wave forcing. The self-adjoint method solves both the
wave forcing and free plate problem. The eigenfunctions for the self-adjoint method are orthogonal and the eigenvalues
are continuous and consist of all R, which makes the calculation of the eigenvalues trivial. The Lax-Philips method has
discrete eigenvalues and the system of eigenfunctions is biorthogonal. The eigenvalues for the Lax-Philips method must
be calculated numerically. however the Lax-Philips method has the significant advantage that the modes of vibration of
the plate-water system and their frequency and rate of decay are found.
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