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Introduction

Trapped modes are free oscillations with finite energy of an unbounded fluid for which the fluid
motion is essentially confined to the vicinity of a fixed structure. In recent years it has been
discovered that such modes exist in the three-dimensional linearized water-wave problem and may
be supported at specific frequencies by certain ‘trapping structures’ [1,2]. The existence of a trapped
mode at a particular frequency implies the non-uniqueness, or even non-existence, of the solution
to the scattering or radiation problem at that frequency.

Figure 1: Perspective view of the submerged
surface of an axisymmetric trapping structure.

Axisymmetric trapped modes in the presence of ax-
isymmetric structures may be constructed by an in-
verse procedure in which the main idea is to specify
an axisymmetric velocity field that decays at large dis-
tances, and then to seek stream surfaces that corre-
spond to rigid structures [1]. A time-harmonic circu-
lar ring source of radius c, and with a vertical axis of
symmetry, is placed in the free surface. There is no
wave propagation to infinity at the frequencies given
by Kc = j0,n, where K = ω2/g, ω is the radian fre-
quency, g is the acceleration due to gravity, and j0,n is
the nth zero of the Bessel function J0. Axisymmetric
stream surfaces of this flow correspond to particular
toroidal structures intersecting the free surface which,
by construction, are able to support free oscillations of
the fluid; an example of such a structure is shown in fig-
ure 1. Subsequently, the construction was extended [2]
to give non-axisymmetric trapped modes in the presence of axisymmetric toroidal structures by
allowing the strength of the ring source, and hence the corresponding velocity field, to have a sinu-
soidal azimuthal variation. A hydrodynamic analysis has been performed for axisymmetric trapping
structures [3] and singular behaviour of, for example, the added mass and damping is observed in
the vicinity of the trapped-mode frequency.

The question arises ‘Can non-axisymmetric trapping structures be found?’. The present work
answers this question in the affirmative and, in particular, it is demonstrated that non-axisymmetric
trapping structures can be constructed from an axisymmetric velocity field.

Construction of trapped modes

It is most convenient to work in terms of toroidal coordinates (r, θ, β) with r > 0, 0 ≤ θ < π, and
0 ≤ β < 2π [4], which are related to rectangular Cartesian coordinates (x, y, z) by

x = (c− r cos θ) cos β, y = (c− r cos θ) sinβ, z = r sin θ, (1)
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where c is the radius of a circular ring in the free surface (perhaps coinciding with a ring source as
described above), and z is directed vertically downwards with z = 0 corresponding to the mean free
surface. Thus, β is an azimuthal angle measured around the z axis and, in any vertical plane through
the z axis, (r, θ) are equivalent to plane polar coordinates with origin at R = (x2 +y2)1/2 = c, z = 0.

As in previous work [1,2], a flow field is first specified in terms of a velocity potential

Φ(r, θ, β, t) = φ(r, θ, β) cos ωt, (2)

where t is time and ω is the radian frequency of the fluid oscillations. Let er, eθ, and eβ be unit
vectors in the r, θ and β directions respectively. With the time dependence removed, the velocity is

∇φ =
∂φ

∂r
er +

1
r

∂φ

∂θ
eθ +

1
c− r cos θ

∂φ

∂β
eβ (3)

and it is required to determined a surface r = r(θ, β) such that

∇φ.n = 0, (4)

for all normals
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to the surface. In other words, the kinematic condition to be satisfied on a structural surface is
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Now for qθ �= 0 equation (6) can be rewritten as
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so that
dr

dθ
=
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(9)

on the curves
dβ

dθ
=

qβ

qθ
. (10)

The last two equations determine the so-called characteristic curves [5, Chapter II, §1]. Under
certain not very restrictive conditions, given an initial curve Γ in the free surface defined by r =
r(0, β), equations (9)–(10) can be integrated from initial points (r(0, β0), 0, β0) on Γ to determine
curves that are everywhere parallel to the velocity field. Thus, given the velocity field and an
appropriately chosen initial closed curve Γ in the free surface, a stream surface can be generated by
simultaneous integration over 0 ≤ θ ≤ π of the two first-order differential equations (9)–(10). For a
velocity field generated from a ring source that is singular in the free surface at R = c, a sensible
choice for Γ is a closed curve surrounding the origin and entirely within R = c.

For the special case in which the specified flow is axisymmetric, so that qβ = 0, equation (10)
gives immediately that β is constant on any characteristic curve and it is sufficient to integrate (9)
to determine the characteristics. Although the velocity field is axisymmetric there is no requirement
that the initial curve Γ must also be axisymmetric. Thus, non-axisymmetric stream surfaces can
be generated from axisymmetric velocity fields!
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Stream-function approach

Another approach to the axisymmetric flow case is to express the given velocity field in terms of a
function ψ(r, θ, β) so that

∇φ = − 1
r(c− r cos θ)

∂ψ

∂θ
er +

1
r(c− r cos θ)

∂ψ

∂r
eθ; (11)

the particular form arises from the requirement that ∇2φ = 0. For some constant C, a normal to a
surface S defined by

ψ(r, θ, β) = C (12)

is
∇ψ =

∂ψ
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r
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1
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∂ψ
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eβ (13)

and the construction ensures that ∇ψ is perpendicular to ∇φ everywhere on S, and hence S is a
stream surface of the flow. Given an axisymmetric velocity field, (11) can be solved to determine ψ;
this is probably best done in a different coordinate system. In most applications ψ is chosen to be
axisymmetric (and often called the Stokes’ stream function) so that ψ is independent of β and the
surfaces S are also axisymmetric. This is the approach initially adopted in this problem in order to
generate axisymmetric trapping structures from axisymmetric velocity fields [1]. However, if

ψ(r, θ, β) = Ψ(r, θ) (14)

is a particular solution to (11) then

ψ(r, θ, β) = Ψ(r, θ) + χ(β) (15)

is also a solution for any reasonable χ(β). In general, the surfaces S generated from (12) using (15)
are not axisymmetric.

An example of a non-axisymmetric trapping structure

Many types of non-axisymmetric trapping structures can be generated in the manner described
above. For instance, the structure shown in figure 1 can be distorted so that the inner and outer
radii are smoothly varying functions of the azimuthal angle β. Here we present another example in
which sections of different radius are joined together.

The axisymmetric flow is specified in terms of the potential for a ring source of radius one. The
geometry of the structure shown in figure 2 is defined explicitly, in a manner described elsewhere [6].
Three ‘patches’ are defined in one quadrant as follows. Patch 1 consists of a partial torus with inner
waterline radius 0.2 restricted to the range β ∈ (0, π/4), patch 2 consists of a partial torus with
inner waterline radius 0.3 restricted to the range β ∈ (π/4, π/2), and patch 3 is the portion of the
azimuthal plane β = π/4 between the generating sections of the first two patches (planes of constant
β are also stream surfaces of an axisymmetric flow). After reflection about the planes x = 0 and
y = 0 a non-axisymmetric closed structure is formed, with the property that its surface coincides
with the axisymmetric stream surfaces generated by the ring source. The toroidal radial coordinates
of the generating sections for the first two patches are defined by economized polynomials of degree
10 in the angle θ. The maximum error in these polynomial approximations is 5× 10−6.

Figure 3 shows the heave added-mass coefficient for this structure, computed by the program
WAMIT with quadratic B-spline representation of the potential and exact representation of the
geometry as defined by the above polynomial approximations. Three different results are shown,
with N=48, 108, and 300 unknowns in the linear system of equations, corresponding to subdivisions
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Figure 2: Perspective view of a non-axisymmetric
trapping structure. The dark lines show the
boundaries of each patch and its reflections about
the planes of symmetry.
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Figure 3: Heave added-mass coefficient a33, normal-
ized with respect to the radius of the ring source and
fluid density vs. the wavenumber K.

N panels K0 |a33|
48 2× 2 2.430 374
108 4× 4 2.406 4,440
300 8× 8 2.4048 69,000

Table 1: Singular wave number K0 and added mass a33 as a function of the number of unknowns N .

of each patch into 2× 2, 4× 4, and 8× 8 elements. These results are computed in the range shown
using 102 closely spaced wavenumbers. In the vicinity of the singular wavenumber K = j0,1 ≈ 2.4048
the increment is ∆K = 0.0001. The value K0 of the wavenumber where the added-mass coefficient
changes sign and the maximum value of this coefficient are shown in table 1. These numerical
results give strong supporting evidence for the existence of non-axisymmetric trapping structures.
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