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Introduction

In linear water-wave theory a trapped mode is defined to be a non-zero solution of the homogeneous
equations and boundary conditions, which doesn’t radiate waves and has finite energy. The exis-
tence of such modes supported by three-dimensional, surface-piercing bodies in the open sea was
first established by McIver & McIver[1]. They constructed an axisymmetric potential and defined
the shape of the body to be one of the stream surfaces of the flow. In practice, however, it would
be more useful to be able to specify the shape of the obstacle and determine whether there are any
trapped modes for that geometry. The purpose of this work is to show how this may be done for
certain classes of bodies by exploiting the link between three-dimensional trapped modes and zeros
of transmission for two-dimensional obstacles. First a plane wave approximation to a trapped mode
is derived, then a numerical technique for finding exact trapped mode wave numbers is described.
Finally some results which show that modes may be trapped by a submerged elliptical torus are
presented.

The plane wave approximation

A two-dimensional body which is totally submerged in deep water and which possesses a zero of
transmission is rotated through 360o about a vertical axis outside the body, to form a submerged
torus. The axis of rotation is at a distance c from a reference axis through the body where
c/a � 1 and a is a typical dimension of the original two-dimensional body. Rectangular Cartesian
coordinates are chosen so that the origin is in the mean free surface above the centre of the torus
and the z-axis points vertically upwards. An approximation to the trapped mode potential is sought
which represents a standing wave in the region r =

√
x2 + y2 � c and is zero for r � c. The two

potentials are then matched across the torus using the plane wave approximation of Simon[2]. The
axisymmetric standing wave is given by

Re[φ e−iωt] = Re[J0(kr) ekz−iωt] (1)

where J0 is the zero-order Bessel function of the first kind, ω is the angular frequency of oscillation,
k = ω2/g and g is the acceleration due to gravity. By writing kr = k(r − c) + kc and using the
addition theorem and the large argument expansion for Bessel functions, it may be shown that

φ ∼
√

1
2πkc

ei(kc−π/4)+kz
[
eik(r−c) +i e−2ikc e−ik(r−c)

]
, kc � 1, k(r − c) = O(1). (2)

Near the body of the torus this represents a plane wave which propagates outwards along a radial
line and which is totally reflected by the two-dimensional body formed by the cross-section of the
torus. Clearly this can only occur if the wave number corresponds to a point of zero transmission
of the two-dimensional body and the reflection coefficient is given by

R = i e−2ikc . (3)

This last equation gives possible values of kc in terms of the phase of the reflection coefficient. So,
if R = eiδ is known from the solution of the two-dimensional scattering problem, then

kc =
π

4
− δ

2
+ nπ, (4)
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where n is an arbitrary integer. (Newman[3] used matched asymptotic expansions to perform
a similar but more rigorous analysis of a floating torus at small but non-zero values of R.) It
is interesting to observe that the corresponding result for a wide-spacing approximation to two-
dimensional modes trapped between two bodies is kc = −δ/2 + nπ, and so there is a difference of
π/4 between the two and three dimensional approximate values of kc.

Numerical location of trapped modes

The analysis of the previous section is only approximate and so it is not obvious whether the torus
can support trapped modes or whether it just has highly tuned resonances. In this section a method
is described which both demonstrates that there is a perturbation of the torus which supports a
trapped mode, and allows its accurate computation.

An exact axisymmetric trapped mode for a submerged torus is sought where, without loss of
generality, the potential φ is assumed to be real. An application of Green’s theorem to φ and the
ring source gives φ at an arbitrary point in the fluid in terms of an integral of φ multiplied by the
normal derivative of the ring source around the boundary of the torus. This is then differentiated,
evaluated on the boundary of the torus and integrated by parts to give

∫ 2π

0
H(r(t), z(t); r(τ), z(τ)) q(t) dt = ψc, 0 ≤ τ < 2π, (5)

where q(t) = ∂φ/∂sds/dt. The function ∂φ/∂s is the tangential derivative of φ on the boundary
of the cross-section of the torus, (r(t), z(t)) are the radial and vertical coordinates of a point on
the torus, ψc is the unknown, real, constant value of the Stokes’ stream function on the torus and

H(r, z; r0, z0) =
2krkr0

π

∫ ∞

0

(ν sin νkz − cos νkz)(ν sin νkz0 − cos νkz0)I1(νkr<)K1(νkr>)
ν2 + 1

dν

− iπkrkr0 ek(z+z0) J1(kr<)H1(kr>), (6)

where J1, H1, I1 and K1 are the usual Bessel and modified Bessel functions, r< = min(r0, r) and
r> = max(r0, r). In addition, to ensure zero circulation around the torus

∫ 2π

0
q(t) dt = 0. (7)

The boundary of the torus is assumed to be smooth and so q(t) is approximated by a series of
trigonometric functions

q(t) ≈
2N∑
n=1

anun(t), where u2n−1(t) = sinnt, u2n(t) = cos nt. (8)

(The omission of the constant term ensures that (7) is automatically satisfied.) An application of
Galerkin’s method yields a real homogeneous matrix equation for the coefficients {an}

2N∑
n=1

Kmnan = 0, where Kmn =
∫ 2π

0

∫ 2π

0
Re[H(r(t), z(t); r(τ), z(τ)]um(τ)un(t) dτ dt,

m = 1, . . . , 2N. (9)

In addition, in order to satisfy the imaginary part of (5)

S ≡
2N∑
n=1

fnan = 0, where fn =
∫ 2π

0
kr(t) ekz(t) J1(kr(t))un(t) dt. (10)

Thus, a trapped mode wave number is a value of k for which det(Kmn) = 0 and the resulting
eigenfunction satisfies the side condition (10).
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Results and discussion

Numerical calculations were performed for a submerged elliptical torus whose boundary is param-
eterised by

(r, z) = (c + a cos t,−d + b sin t), 0 ≤ t < 2π. (11)

Computations for a submerged ellipse with b/a = 0.16 and d/a = 0.25 show that a zero of transmis-
sion exists at ka = 0.525 and the plane wave approximation predicts that a torus with c/a = 3.600
supports a trapped mode. Exact trapped modes are sought for an elliptical torus with the same
values of b/a and d/a and neighbouring values of c/a and ka. Figure 1 illustrates the curves
det(Kmn) = 0 and S̃ ≡ ∑2N

n=1 fnãn = 0 as functions of c/a and ka in the vicinity of c/a = 3.600 and
ka = 0.525, where the coefficients {ãn} are the coefficients in the eigenfunction for the eigenvalue
of Kmn which has the smallest magnitude. At the point where the two curves cross S̃ = S and so
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Figure 1: Crossing of the curves det(Kmn) = 0 and S̃ = 0 for an elliptical torus,
b/a = 0.16, d/a = 0.25.

det(Kmn) = 0 and S = 0 there. The two curves are generated by determining where real quantities
change sign and the fact that the curves cross rather than touch gives confidence that a trapped
mode exists, even though the values of ka and c/a may not be found exactly. Table 1 summarises
the trapped mode parameters obtained by this method for different values of b/a and d/a.

b/a
d/a 0.04 0.08 0.12 0.16 0.2 0.24

0.3 - - - -
4.22430
0.48159

3.98209
0.45113

0.25 -
3.96860
0.56043

3.71152
0.56145

3.62155
0.52627

3.66547
0.45148

4.21728
0.28664

0.2
3.25850
0.65717

3.26333
0.61093

3.33559
0.53944

3.57864
0.42465

- -

0.15
3.03694
0.63019

3.23079
0.52534

3.75368
0.36853

- - -

0.1
3.31776
0.47983

4.43568
0.27962

- - - -

Table 1: Summary of values of c/a (upper entry) and ka (lower entry) for trapping
by an elliptical torus for selected values of aspect ratio, b/a, and submergence, d/a.
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Figures 2 and 3 illustrate the non-dimensional heave added mass and damping for a torus with
b/a = 0.16, d/a = 0.25 and c/a = 3.62155, calculated using WAMIT with a varying number of
panels. The panels are distributed at equal azimuthal angles and at equal values of the arc length
around the boundary of the torus. It is clear from the figures there is a large spike in the added
mass and damping at ka ≈ 0.527 which supports the existence of a trapped mode at that value.
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Figure 2: Heave added mass for a submerged elliptical torus, b/a = 0.16, d/a = 0.25,
c/a = 3.62155. Number of panels on 1/4 torus, (: 1920, —: 1024, · · ·: 512, −·−:256

0.2 0.4 0.6 0.8 1
ka

100

200

300

400

500

O(106) at ka=0.527,
1024 panels

non-dimensional
damping

Figure 3: Heave damping for a submerged elliptical torus, b/a = 0.16, d/a = 0.25,
c/a = 3.62155. Number of panels on 1/4 torus, (: 1920, —: 1024, · · ·: 512, −·−:256
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