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INTRODUCTION

The importance of trapped modes in the design of offshore structures which are supported by large
arrays of vertical cylindrical structures was brought to prominence by Maniar and Newman (1997)
who, in an investigation into the scattering of surface waves by a long but finite array of bottom-
mounted vertical circular cylinders, discovered that at particular frequencies the hydrodynamic
loads on the cylinders could become abnormally large. They identified this phenomenon with the
existence of resonant trapped modes when cylinders are placed in channels on the walls of which
either Neumann or Dirichlet boundary conditions are applied. For the Neumann case such modes
were well known, but Maniar and Newman’s observation that such modes could exist when the
potential rather than its normal derivative was made to vanish on the walls, provided the cylinder
radius was smaller than some critical value, was new. The trapped modes that can exist when N
circular cylinders are placed across a channel in such a way that they form a section of an infinite
array of equally-spaced cylinders were subsequently investigated by Utsunomiya and Eatock Taylor
(1999). By representing the solution as a series of multipole potentials they were able to numeri-
cally compute N distinct trapped modes for any given cylinder radius when Neumann boundary
conditions were applied on the tank walls, but for the case of Dirichlet boundary conditions they
found N − 1 or N modes depending on whether the cylinder radius was greater than or less than
some critical value.

Porter and Evans (1999) used an integral equation technique to investigate the more general
phenomenon of Rayleigh-Bloch surface waves (for which no general existence criteria are known)
travelling along arbitrary periodic structures. Such waves are characterized by two parameters,
k and β, the first being related to the frequency and the second corresponding to the dominant
wavenumber in the direction along the structure. The parameter β provides a natural cut-off in that
for values of k less than β energy cannot propagate away from the structure and so it is possible to
look for specific values of k < β at which pure Rayleigh-Bloch surface waves can occur. Porter and
Evans showed that for certain discrete values of β these modes may correspond to trapped modes
in the vicinity of a finite array of cylinders spanning a channel; precisely the situation studied by
Utsunomiya and Eatock Taylor for an array of circular cylinders. If one assumes the existence of
pure Rayleigh-Bloch surface waves for a particular periodic structure, then Porter and Evans’ work
explains the results of Utsunomiya and Eatock Taylor.

The purpose of this paper is to show that the channel modes found by Utsunomiya and
Eatock Taylor and by Porter and Evans correspond to discrete eigenvalues below the continu-
ous spectrum for certain differential operators and to show how standard variational arguments
can be used to prove their existence. The key ingredient is a decomposition theorem which shows
that functions f(y) defined on domains which are both periodic and symmetric about zero and
which also satisfy conditions equivalent to Neumann or Dirichlet boundary conditions on y = 0
and 2N can be decomposed into N + 1 orthogonal functions. This is a direct extension of the
decomposition of a function defined on a symmetric domain into its symmetric and antisymmetric
parts (which corresponds to the case N = 1). This result can be applied to the scattering poten-
tials for channels containing periodic structures and the class of all such potentials decomposed
into N +1 subclasses. Green’s theorem then shows that an incident wave in a particular class only
scatters waves from the same class.

Spectral theory can be used to show that N + 1 operators exist for each problem, all of whose
continuous spectra are bounded away from zero in the Dirichlet case and N of which have this
property in the Neumann case. The existence of trapped modes then follows from a standard
variational argument.
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DECOMPOSITION THEOREM

Assume that D ⊂ R is periodic with period 2 and also symmetric about zero, i.e. if y ∈ D then
y + 2 ∈ D and −y ∈ D (from which it follows that 2n ± y ∈ D, n ∈ Z). Let f : D ∩ [0, 2N ] → R,
N ∈ N, be given and extend it to a function on the whole of D by either

f(−y) = f(y), f(2N + y) = f(2N − y), (1)

which will be referred to as the Neumann case, or

f(−y) = −f(y), f(2N + y) = −f(2N − y), (2)

which will be referred to as the Dirichlet case. Under these conditions

f(y) =
N∑

m=0

fm(y), (3)

where

fm(y) =
γN

m

2N

N∑
n=1−N

cN
mnf(y + 2n), (4)

cN
mn = cos

mnπ

N
, γN

m =
2

1 + δm0 + δmN
(5)

and δmn is the Kronecker delta.
Furthermore, suppose that two functions f and g, which are defined on the same domain D and

which both satisfy either (1) or (2), are decomposed according to (3) and (4), then the following
orthogonality result holds:

∫ 2N

0
fm(y)gµ(y) dy = δmµ

γN
m

2N

N−1∑
s=−N

N−1∑
σ=−N

cN
m,s−σ

∫ 1

0
f(y + 2s)g(y + 2σ) dy. (6)

When N = 1 this decomposition theorem is nothing more than the splitting of a function defined
on a symmetric domain into its symmetric and antisymmetric parts. For N > 2 the symmetry
properties of the functions fm are still of interest, but they are insufficient to completely characterize
the decomposition.

As an example, consider the Green’s function for the two-dimensional Helmholtz equation (∇2+
k2)φ = 0 in a channel of width 2N , satisfying Neumann boundary conditions on the guide walls.
One way to represent this function is as an eigenfunction expansion and then from (3) we can
obtain

G(x − ξ, y, η) =
N∑

m=0

Gm(x − ξ, y, η), (7)

where

Gm(x − ξ, y, η) = − γN
m

4N

∞∑
n=−∞

e−αmn|x−ξ|

αmn
cos βmny cos βmnη (8)

and
αmn =

(
β2

mn − k2
)1/2

= −i
(
k2 − β2

mn

)1/2
, βmn =

(m + 2nN)π
2N

. (9)

The function Gm represents a sum of unequal sources at x = ξ, y = 2n± η, n ∈ Z and thus has 2N
singularities within the guide (at y = η, y = 2n ± η, n = 1, . . . , N − 1, y = 2N − η) even though
the combination of these functions given by (7) only has one such singularity.

Suppose now that we wish to solve a scattering problem in a channel spanned by an array of
cylinders. The potential φ can be split up into N + 1 orthogonal functions and if we apply Green’s
theorem to φ and Gm we obtain

1
2
φm(ξ, η) =

∫
B

φm
∂Gm

∂n
ds + χm, (ξ, η) ∈ B, (10)
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where χm comes from the decomposition of the incident wave and B is the boundary of the cylinder
array. Thus, for the special types of geometry under consideration, an arbitrary scattering problem
can be decomposed into N + 1 independent problems.

This result is of both practical and theoretical importance. From a practical point of view, the
decomposition leads to a significant computational saving when calculating the effects of scattering
by an array of cylinders spanning a channel, and from a theoretical viewpoint it enables us to prove
the existence of trapped modes as described below.

RESONANCES

If we denote the fluid domain by Ω, then the solution to a scattering problem of the type described
above will not be unique if a non-trivial solution to the homogeneous boundary-value problem

(∇2 + k2)φ = 0 in Ω, (11)
∂φ

∂y
= 0 on y = 0, 2N, (12)

∂φ

∂n
= 0 on B, (13)

φ → 0 as |x| → ∞, (14)

exists. If such a solution exists for a given k2 then k2 is an eigenvalue of −∇2 (with Neumann
boundary conditions) on the domain Ω. The solution itself (which is known as a trapped mode or
an acoustic resonance) is the corresponding eigenvector.

In terms of the spectral theory of operators we can think of (11)–(14) as being an eigenvalue
problem for an operator A consisting of −∇2 in Ω together with the various boundary conditions.
The spectrum of A is a closed set containing all the values of k2 for which the operator A − k2I
does not have a bounded inverse and for the above problem this set can be divided into two disjoint
subsets. The values of k2 for which the operator A − k2I is not invertible are called eigenvalues of
A and together they make up the point spectrum of A, denoted by σp(A). It is well-known that
for the problem specified in (11)–(14) any eigenvalues are real and non-negative. The remainder of
the spectrum of A is called the continuous spectrum and denoted by σc(A). We can also consider
the set of values of k2 for which we can set up a wave scattering problem. This set is the essential
spectrum of A and is denoted by σess(A). The essential spectrum is the union of the continuous
spectrum and any embedded eigenvalues.

It is well-known that σess(A) = [0,∞) and so any eigenvalue of A is necessarily embedded in the
continuous spectrum which makes analysis of these eigenvalues difficult. One way of overcoming the
problem is to find a decomposition of the space of functions on which A operates, S = S0⊕S1 say (⊕
denotes direct sum), such that when we consider the operator A restricted to one of these subspaces
the continuous spectrum is moved away from the origin. An example is provided by Evans, Levitin,
and Vassiliev (1994) who considered the case N = 1. Below we extend this decomposition to
arbitrary N ∈ N which allows N eigenvalues to be found for each geometry.

Suppose then that we have a channel spanned by a periodic structure. The decomposition
theorem shows that any function which is defined on Ω can be written as

φ(x, y) =
N∑

m=0

φm(x, y) (15)

and we can thus decompose the space of square integrable functions in the fluid region Ω as

L2(Ω) = S0 ⊕ S1 ⊕ · · · ⊕ SN , (16)

where Sm is the space of functions of the form φm(x, y). It makes sense to restrict the operator
A to one of the spaces Sm and this restricted operator will be labelled Am. Within a given space
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Sm, waves can only exist if k2 > m2π2/4N2. We write βm = mπ/2N and then it follows that the
essential spectrum for Am is given by

σess(Am) = [β2
m,∞) (17)

and so there is a non-zero cut-off for each of the spaces except for S0. Standard variational
arguments can then be used to show that the operator Am, m ∈ {1, . . . , N} has at least one
eigenvalue less than β2

m.
Different results apply to the Dirichlet case. Thus we consider the homogeneous boundary-value

problem (11)–(14) with (12) replaced by

φ = 0 on y = 0, 2N, (18)

though we will still refer to the associated operator as A. The space L2(Ω) can be decomposed
exactly as before. The essential spectrum for Am is now given by

σess(Am) =




[β2
m,∞) m = 1, . . . , N,

[π2,∞) m = 0
(19)

and so there is a non-zero cut-off for all of the spaces. However, the case m = N corresponds
to a single body symmetrically placed about the centreline of a channel of width 2 with Dirichlet
conditions on the walls and it has been proven (see McIver and Linton 1995, p548) that no trapped
modes can exist in this case for k < π/2 = βN . Hence we can only hope to prove the existence of
trapped modes for m = 0, . . . , N − 1.

Variational arguments in fact show that the operator Am, m ∈ {1, . . . , N − 1} has at least one
eigenvalue and that the operator A0 has at least one eigenvalue if the body shape satisfies some
geometric condition.
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