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1. Introduction. In the coastal zone free-surface waves are often quite non-linear, due to shoaling from
deeper water where they have been generated by wind or other means. To understand and predict the further
evolution in the coastal zone wave-interaction processes are studied by several means. The results of such studies
may be applicable to spectral wave models like WAM (e.g. see Komen et al., 1994) and SWAN (Booij et al.,
1999), as well as to the drift motion of ships moored in shallow water.

2. Cumulant-closure approaches. In the coastal zone we usually have water of restricted depth, for
which case Boussinesq-like equations form an adequate description, e.g. Dingemans (1997). For simplicity of
the discussion we now treat only 1D horizontal wave propagation in this section. Examples of this approach
have been given, amongst others, by Rasmussen (1998) and by Becq-Girard et al. (1999). Also approaches
based on the Laplace equations are followed, e.g. Eldeberky and Madsen (1999). See also Dingemans (2000) for
a discussion on the above models. Starting with the Boussinesq-like equations given by Madsen and Sørensen
(1993) for a slowly-varying bottom formulated in the free-surface elevation ζ(x, t) and the vertically integrated
velocity q =

∫
dz u(x, z, t). The Fourier expansions of ζ and q are written as:(

ζ(x, t)
q(x, t)

)
=

∞∑
m=−∞

(
1
ωm
km(x)

)
Am(βx) exp [i (ωmt− ψm(x))](2.1)

where km = ∂ψm/∂x and β � 1 denotes the slow variation of the amplitudes. Inserting these series in the
Boussinesq-like equations and keeping only the lowest-order terms in β leads to an amplitude equation of the
following form

dA′q
dx

=
(
σq
dh

dx
− ikq(x)

)
A′q + i

∞∑
m=−∞

Jm,q−mA
′
mA
′
q−m ,(2.2)

where A′q = Aq exp [−iψq(x)] and the linear shoaling coefficient σq and the interaction coefficient Jm,q−m are
long expressions, independent of the bottom slope. Notice that reflection has been neglected.

To obtain a model in terms of the (discrete) variance (power spectrum) Eq =
〈
A′qA

′∗
q

〉
the evolution equation

(2.2) is multiplied with A′∗q ; the conjugate evolution equation is multiplied with A′q and the averaged. Both
contributions are added and of the results the ensemble average is taken. The result is an evolution equation
for the discrete spectral values:

dEq
dx

= 2σq
dh

dx
Eq − 2

∞∑
−∞

Jm,q−m Im {Bm,q−m} ,(2.3)

where the bi-spectrum is defined by Bm,q−m =
〈
A′mA

′
q−mA

′∗
q

〉
.

In the same way an evolution equation for the bi-spectrum can be derived (e.g, see Rasmussen, 1998):

dBm,q−m
dx

=
[
(σm + σq−m + σq)

dh

dx
− iδk(x)

]
Bm,q−m

+i
∞∑
−∞

(Jn,m−nTn,m−n,q−m,−q + Jn,q−m−nTn,q−m−n,m,−q − Jn,q−nT−n,n−q,m,q−m) ,(2.4)

where δk(x) = km(x) + kq−m(x) − kq(x) is the wave-number mismatch, and Tn,m−n,q−m,−q is the discrete
tri-spectrum defined as Tn,m−n,q−m,−q =

〈
A′nA

′
m−nA

′
q−mA

′∗
q

〉
.

3. Closure hypotheses. Some closure is needed now because the tri-spectrum is in principle unknown.
What is usually done is to assume the wave field to be Gaussian, which allows one to discard the fourth-
order cumulant. An n-th order moment of random quantities a1 · · · an can be reduced to a sum of products of
lower-order moments, plus a irreducible term, the n-th order cumulant:

〈a1 · · · an〉 =
n−1∑
j=1

〈a1 · · · aj〉 〈aj+1 · · · an〉+ 〈a1 · · · an〉C .(3.1)
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For a discussion of cumulants1 for both random variables and random fields is referred to Monin and Yaglom
(1975, pp. 223 ff.) or to Kendall and Stuart (1977, Chapter 3).

When also near-stationarity is assumed and when shallow-water wave approximations are used to simplify
the coefficients, the following evolution equation for the bi-spectrum results (i.e. see Rasmussen2, 1998, Eqs.
(9.20) and (9.21)):

dEq
dx

= 2
(
σq
dh

dx

)
Eq − 2

∞∑
m=−∞

Jm,q−m Im {Bm,q−m} ,(3.2a)

and
dBm,q−m

dx
=
[
(σm + σq−m + σq)

dh

dx
− iδk(x)

]
Bm,q−m

+2iJm,q−m

(
km
kq
EqEq−m +

kq−m
kq

EqEm −
kq
km

EmEq−m

)
.(3.2b)

For use in wave models like WAM and SWAN it is advantageous to decouple these equations.However, this can
only be done in a very approximate way and the resulting spectral energy evolution equation gives no evolution
in case of a horizontal bottom. The fourth-order cumulant discard hypothesis has been used extensively, see,
e.g. Rasmussen (1998) and Eldeberky and Madsen (1999).

In turbulence research it is well known that the fourth-order cumulant discard hypothesis (also known as
the Millionschikov hypothesis, see, e.g., Monin and Yaglom, 1975, p. 241 and §19.3). Applying this hypothesis
leads to an evolution equation for the energy which leads to negative energies eventually because of the viscous
damping. In water waves a similar damping is present because usually a cut-off frequency is used and increasingly
shorter waves come in the region beyond the cut-off frequency and lead to a form of damping. The inconsistency
in using the Gaussianity assumption can be made clear in the following way. The energy density evolution
equation shows the generation of bound waves. With the presence of bound and free waves in the wave field, it
cannot be true anymore that the totality of the wave field remains Gaussian (or, otherwise stated, uncoupled
and therefore linear). Janssen (1991) shows that it is a necessity for having transfer of energy over the various
components of the spectrum to have the fourth-order cumulant to be different from zero. He therefore takes
the sixth-order cumulant to be zero.

A different, but related view has been given by Holloway (1980). Instead of taking the n-th order cumulant
to be zero, 〈a1 · · · an〉C = 0, Holloway (1980) substitutes for the n-th order cumulant a term linear in the
(n − 1)-th cumulant 〈a1 · · · an−1〉C with a fore-factor which is an unknown function of lower-order cumulants.
Effectively what is happening is that instead of supposing the fourth-order cumulant to be zero, the difference
between the fourth-order cumulant and some linear functional of the triple correlation is supposed to be zero.
Following Holloway (1980), the kinetic equation for the spectral action density N` can be written in the following
general form:

∂N`
∂t

=
∫

∆

dkmdknΓ`mn (Nm −N`)Nnθ`nm ,(3.3)

with
∫

∆
denoting the integration over the wave numbers satisfying k` + km + kn = 0, the Γ`mn are the

interaction coefficients depending on the specific model and θ`mn = Re
{

[µ`mn + i (ω`mn)]−1
}
. The coupling

coefficient thus appears as an frequency uncertainty coefficient among three interaction waves, indicating a
broadening of the resonance condition. For the determination of µ`mn Holloway suggests to identify it with the
sum of the individual interaction rates µ`mn = η` + ηm + ηn with the fundamental interaction rate η` given by
η` =

∫
∆
dkmdknΓ`mnNnθ`mn . Equation (3.3) together with the relations for θ`mn, µ`mn and η` constitute a

closed set of equations describing the evolution of strongly-interacting waves. In the approach of Becq-Girard
em et al. (1999) an approximate version of the approach of Holloway has been followed. Here the parameter
µ`mn has been replaced by a fixed parameter K to be chosen beforehand. No simple prescription how to choose
K is available.

4. Perturbation-series approaches. Another approach to describe the non-linear triad interactions is
by the direct application of Stokes’ second-order wave theory to directional random waves. This has been done in
a classical Stokes’ second-order perturbation-series approach for deep-water waves by e.g. Masuda et al. (1979),
and for an arbitrary water depth with a horizontal bed by e.g. Dean and Sharma (1981) and Laing (1986).
Willebrand (1975) started from a variational principle and derived similar results which are also applicable to
mildly sloping sea beds.

1In the Russian literature cumulant is also termed semi-invariant.
2Rasmussen also considers effects of wave dissipation due to wave breaking, which effects we here ignore.
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Fig. 4.1. Influence of the amount of directional spreading on the second-order spectrum.

The perturbation-series approaches make distinction at a certain frequency between free wave-components
satisfying the wave dispersion relationship and bound components forming a non-resonant triad with two free
components. The bound wave-components are traveling with a celerity not satisfying the wave dispersion
relationship. This multi-component description per wave frequency and direction is different from the approaches
described in Section 2 (e.g. Becq-Girard et al., 1999; Eldeberky and Madsen, 1999; Herbers and Burton, 1997;
Rasmussen, 1998) which consider only one wave component per wave frequency and direction.

Using the nomenclature of Laing (1986), the free surface elevation ζ(x, t) in the perturbation-series approach
can be described as:

ζ(x, t) =
∞∑

m=−∞
Am exp[ i (ωmt− km · x)] +(4.1a)

+
∞∑

m=−∞

∞∑
n=−∞

D2(ωm,km;ωn,kn)
g [1− Ω2

m,n/(g κm,n tanhκm,n h)]
Am An exp[ i (Ωm,nt− κm,n · x)],

with Ωm,n = ωm + ωn and κm,n = km + kn respectively the angular frequency and the wave number of the
bound-wave components with kernel D2, κm,n = |κm,n|, (ωm, ωn) and (km,kn) the angular frequency and
wave number of the free-wave components. Further we have for the negative-indexed quantities the following
symmetry relations in order to get a real-valued free surface elevation ζ(x, t):

ω−m = −ωm, k−m = −km, and A−m = A∗m.(4.2)

Assuming the first-order wave components Am to be due to a stationary Gaussian process, it is easy to derive
an expression for the (two-sided) power spectrum Φ(ω,k) of the free surface elevation ζ(x, t):

Φ(ω,k) = Φ1(ω,k) + Φ2(ω,k),(4.3a)

Φ2(ω,k) =
∫ ∫

dk1 dω1 D20(ω1,k1;ω − ω1,k − k1) Φ1(ω1,k1) Φ1(ω − ω1,k − k1),(4.3b)

D20(ω1,k1;ω2,k2) = 2

{
D2(ω1,k1;ω2,k2)

g [1− Ω̂2
1,2/(g κ̂1,2 tanh κ̂1,2 h)

}2

,(4.3c)

with Φ1(ω,k) the two-sided first-order spectrum of the free wave components, Ω̂1,2 = ω1 +ω2, κ̂1,2 = |κ̂1,2| and
κ̂1,2 = k1 + k2.
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For waves with a first-order JONSWAP spectrum and cos2s(θ/2) directional distribution in a water depth
of 8 meter and a peak frequency of 0.91 Hz, Figure 1 gives an example of the influence of the amount of direction
spreading on the wave-number integrated one-sided frequency spectra S1(f) and S2(f):

S1(f) = 4π
∫

Φ1(2πf,k) dk and S2(f) = 4π
∫

Φ2(2πf,k) dk.(4.4)

For a given first-order free-wave spectrum Φ1(ω,k) the associated second-order bound-wave spectrum Φ2(ω,k)
can be determined in a straightforward manner. However, in general the total spectrum Φ(ω,k) is given and
Φ1(ω,k) and Φ2(ω,k) are unknown. Laing (1986) used an iterative procedure to split a given spectrum into a
(first-order) free-wave part and a (second-order) bound-wave part.

5. Concluding remarks. In the coastal zone wave non-linearity is dominated by non-resonant and near-
resonant interactions between wave triads. This in contrast with the situation in deep water, where the energy
content of the bound sub-harmonics is neglegible and the bound super-harmonics also become much less im-
portant (but do not vanish).

Two approaches are being studied: cumulant-closure approaches and perturbation-series approaches. At
the moment there exist no well-proven cumulant-closure relationships, while the perturbation-series approaches
are self-contained at a certain order and do not need additional closure. At this moment the inclusion of a
perturbation-series approach (e.g. Laing, 1986; Willebrand, 1975) into a spectral model for coastal regions like
SWAN (Booij et al., 1999) seems the most straight-forward method for the inclusion of the major non-resonant
bound-wave triad interactions.

For a horizontal bed both the cumulant-closure approaches and the perturbation-series approaches are both
supposed to include a description of second-order bound waves. So, a carefull comparison of both approaches
for this horizontal bed case can lead to more insight into their working and into their weak and strong points.

Another point which still needs further research is the description of near-resonant triad interactions other
than the bound waves.
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