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1. Introduction
A very large floating structures are considered as an alternative of such land-based large facilities as, for

example, airport. A proposed design of floating airport has a thin plate configuration of large horizontal
extend. Bending rigidity of such a floating plate is small, and wave-induced motion of the plate is significantly
affected by its elastic deflection. Analysis of floating plate behaviour in waves is based on hydroelasticity,
in which the coupled hydrodynamics and structural dynamics problems are solved simultaneously. A goal
of the analysis is to predict accurately both the plate deflection and stresses in the plate and to find a way
for their reduction. The latter is of great importance for securing safety and the structure performance.
Reduction of the motion of an floating elastic plate in waves by surrounding it by an breakwater was studied
numerically in [1,2]. It was shown that breakwaters effectively reduce the plate response for long waves
but in the case of short waves the reduction is not well-pronounced. The idea to put a floating structure
in the shadow of a breakwater for reduction of the structure response is clear and practical. However, the
behaviour of a structure in restricted water might be affected by its hydrodynamic interaction with the
breakwater and resonance phenomena might occur. Another way to reduce the floating plate response was
suggested in [6] that is to adjust to the front side of the elastic plate a wave reflector – vertical submerged
plate, the height of which is about three times less than the water depth – or a wave-breaking structure –
multi-column floating structure of small extend. Experiments [6] revealed that both the wave reflector and
the wave-breaking structure decrease deflections of the main structure in the case of short incident waves.
However, for long incident waves which provide greater deflections of the main structure than short waves,
the experiments did not detect well-pronounced effects of the additional structures. Both approaches [2,6]
are based on the idea to protect (to shield) a floating elastic structure from the incident wave action, in
order to reduce a part of the wave energy which can be absorbed by the structure.

In order to test possible approaches aimed to reduce floating plate response in waves, direct numerical
simulations of hydroelastic behaviour of the plate are very attractive. Three-dimensional numerical simu-
lation of the linear response of an elastic plate in waves is the most accurate approach. Three-dimensional
numerical simulations of floating rectangular plate in waves were performed in [3,4]. However, at present
these simulations are still time-consuming and expensive to use them at the design stage. At the very initial
stage of design it looks reasonable to use the simplest models of floating plate behaviour, in order to discover
main trends and to distinguish main features of the problem. If an effect is well-pronounced within a simple
model, it is expected to be of importance also within more accurate models.

In this paper two approaches to reduce elastic deflection of floating plates are described within the two-
dimensional linear theory. In the two-dimensional problem the plate is modeled by an Euler homogeneous
beam. Developed method is applied also to the problem of cracked floating beam. The first approach is
based on the concept of vibration absorber well-known in many engineering applications. Within the second
approach the floating beam is connected to the sea bottom with a spring, rigidity of which can be adjusted
in such a way that the beam deflection due to incident waves is reduced.

Four 2D-problems on hydroelastic behaviour of a floating beam in waves are considered, where the beam
is (i) homogeneous, (ii) cracked, (iii) compound with an elastic connection between the parts of the beam,
(iv) homogeneous and elastically connected to the sea bottom. The problems are treated by the common
method described below. The formulation is given for the third problem on compound beam behaviour,
which is the most general one. The scheme of the flow and the main notations are given in the figure

2. Formulation of the problem
The plane linear problem of a floating beam in waves is considered. The beam vibration is caused by

periodic incident wave of frequency ω and small amplitude A. The beam consist of two parts (see figure)
with their bending stiffnesses EiJi and drafts di (i=1,2) being prescribed. The beam drafts are assumed
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much smaller than both the total beam length 2L and the liquid depth H. We shall determine the beam
deflection and the stress distribution in the beams and study their dependence on characteristics of the beam
parts and conditions of their connection.

Non-dimensional variables are used below: L is taken as the length scale, 1/ω as the time scale, the
amplitude of the incident wave A as the deflection scale, the product ρgA, where ρ is the liquid density
and g is the acceleration due to gravity, as the pressure scale, 2Ldρg as the scale of bending stresses, and
the product AωL as the scale of the velocity potential. Within the linear wave theory the non-dimensional
hydrodynamic pressure p(x, 0, t) along the beam , −1 < x < 1, and the beam deflection w(x, t) are given as
p(x, 0, t) = <[eitP (x)] and w(x, t) = <[eitW (x)], respectively. The new unknown complex-valued functions
P (x) and W (x) satisfy the following equations and the boundary conditions:

P (x) +
γ

2π

∫ 1

−1

P (x0)K(x− x0)dx0 = eikx −W (x), (1)

β(x)W IV − α(x)W = P (x) (−1 < x < 1), (2)

W ′′(±1) = 0, W ′′′(−1) = 0, W ′′′(+1) = klW (+1), (3)

W (l − 0) = W (l + 0), β1W
′′(l − 0) = β2W

′′(l + 0), β1W
′′′(l − 0) = β2W

′′′(l + 0), (4)

W ′′(l − 0) + kT [W ′(l − 0)−W ′(l + 0)] = 0, (5)

where
α(x) =

{
α1 for x ∈ [−1, l),
α2 for x ∈ (l, 1], β(x) =

{
β1 for x ∈ [−1, l),
β2 for x ∈ (l, 1].

The problem (1) - (5) contains eight parameters:
kl = KlL

3/E1J1, kT = KT L/E1J1, γ = Lω2/g, αj = γdj/L, βj = EjJj/(ρgL4), (j = 1, 2)
and k which is the positive solution of the dispersion equation k tanh(kH0) = γ, H0 = H/L. The function
K(z) in (1) is given as

K(z) = −2πi
ke−ik|z|

H0(k2 − γ2) + γ
+ 2π

∞∑
j=1

sje
−sj |z|

H0(s2
j + γ2)− γ

,

where sj = (πj − δj)/H0 and δj is the solution of the equation δj = arctan(γH0/(πj − δj)), j ≥ 1.
The boundary-value problem (1)-(5) describes the hydroelastic behaviour of a free-free homogeneous

beam in waves with α1 = α2, β1 = β2, kl = 0 and kT = ∞, of a free-free cracked beam with α1 = α2, β1 =
β2, kl = 0 and kT ≥ 0, of a free-free compound beam with α1 6= α2, β1 6= β2, kl = 0 and kT ≥ 0, and of an
homogeneous beam connected elastically to the sea bottom, with α1 = α2, β1 = β2, kl 6= 0 and kT = ∞.

3. Method of solution
Problem (1) - (5) can be solved with the help of the normal mode method in the same manner as in [7].

This method reduces the integral equation (1) to infinite system of algebraic equations with respect to the
principle coordinates of the pressure P (x). However, the eigenfunctions of the compound beam are rather
complicated and, moreover, they do not correspond to the features of the hydrodynamic pressure distribution
along the beam. A main idea of the present study is to use different basic functions for the pressure and the
beam deflection. Trigonometric functions are used as basic functions to present the pressure in the form

P (x) =
1
2
a0 +

∞∑
n=1

acn cos πnx +
∞∑

n=1

asn sinπnx. (6)

Substitution of expansion (6) into equation (2) leads to the following expansion for the beam deflection

W (x) =
1
2
a0wc0(x) +

∞∑
n=1

acnwcn(x) +
∞∑

n=1

asnwsn(x). (7)

The functions wcj(x) and wsj(x) satisfy conditions (3)-(5) and equation (2) with P (x) being replaced by
cos(jπx) and sin(jπx), respectively. The functions wcj(x) and wsj(x) are considered here as basic functions
for the beam deflection. The integral equation (1) with account for expansions (6) and (7) leads to the
infinite system of algebraic equations with respect to the coefficients acn and asn.

(I +
γ

2π
S + A) ~a = ~e. (8)

Here I = diag(2, 1, 1, ...) is diagonal matrix, symmetric matrix S comes from the integral term in (1),
symmetric matrix A comes from the term W (x), and ~a = (ac0/2, ac1, ac2, ...acn, as1, as2, ...asn)T . The
elements of the vector ~e are the coefficients in the expansion of exp(ikx) with respect to the trigonometric
functions. All elements of the matrices S and A and those of the vector ~e are given by analytical formulae.

4. Free-free homogeneous beam
Problem (1) - (3) with α1 = α2, β1 = β2 and kl = 0 corresponds to that of hydroelastic behaviour of the

homogeneous free-free beam in waves and was studied in [5] by the domain decomposition method, in [7] by
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the normal mode method and in [8] with the help of a combination of these methods. The obtained numerical
results are in good agreement for low frequencies of incident waves but differ each other for high frequencies.
The problem of high-frequency excitation of floating elastic plates is not solved yet. The low-frequency case
is considered here only.

Numerical calculations were performed for the conditions of the experiments carried out by Wu et al
[8] for homogeneous narrow plate in a channel: d =8.36mm, H =1.1m, h =38mm, EJ =471kg m3/s2,
L =5m. The frequency of incident wave is equal to 4.4s−1 (period of the wave T = 1.429s) and 2.2s−1

(period of the wave T = 2.875s). In this cases β = 7.7 · 10−5, α = 0.016 and α = 0.004, γ = 9.85 and
γ = 2.43, k = 10.1 and k = 3.654, respectively, depending on the incident wave frequency. Convergence
of the numerical algorithm was checked by changing the number of terms taken into account in each sum
of (6) and (7). Ninety terms were used to plot the obtained numerical results. The present results for the
homogeneous beam, are identical with those obtained in [5,7,8] by other methods. The amplitude of the
beam deflection |W (x)| is shown below only for T = 1.429s.

5. Free-free compound beam
The linear problem of two floating beams is considered. The beams are connected with the help of a

torsional spring. Vibrations of the beams are caused by periodic incident wave of small amplitude. The
longer beam is referred to as the main structure, characteristics of which are prescribed. The shorter beam
is referred to as the auxiliary plate, length of which is given. Both characteristics of the auxiliary plate
and the torsional spring stiffness which essentially reduce the vibration amplitude of the main structure are
determined. The auxiliary plate can be adjacent either in front of the structure (case a) or at the rear side
of it (case b).
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Calculations were performed for the conditions of experiments [8] for main plate. Period of the incident
wave is equal to 1.429s (line 1 is for a single plate, line 2 is for case a, line 3 is for case b, length of the
auxiliary plate is equal to 0.25 of the main plate length, (EJ)aux = 100(EJ)main). It was revealed that:
• auxiliary plates adjacent in front of the main structure (case a) decrease the structure vibrations;
• vibrations of the main structure are increased with auxiliary plates attached to its rear side (case b);
• reduction of the vibration is strongest if the plates are simply connected (kT = 0);
• auxiliary plate of length 1.5m decrease the deflections by 20% (case a) and increase them by 10% (case b);
• essential reduction (35%) of the structure vibrations was obtained in the case of rigid auxiliary plates of
length 2.5m simply connected in front of the main structure.

Roughly speaking, in order to reduce the floating plate vibrations, a rigid plate of smaller length has to
be simply connected in front of the main structure.

6. Free-free cracked beam
In order to model the cracked beam problem, the method of matched asymptotic expansions is used.

According to this method, the beam is divided into the ’inner’ region which surrounds the crack, and the
’outer’ region, where the transverse variation of the stresses is not important and the plate is modeled by
an elementary homogeneous beam. In the leading order as h/L → 0, reduction in stiffness of the beam due
to the presence of a crack is modeled with the help of a torsional spring (see figure).
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The equivalent torsional spring stiffness KT for a single-sided crack is assumed known as a function of the
beam parameters and the crack length a. The ’outer’ solution for the floating free-free beam which is divided
by the torsional spring into two parts, provides the bending stresses outside the crack region. Therefore the
’outer’ solution is described by the problem considered in Section 5, where α1 = α2, β1 = β2, kl = 0, kT ≥ 0.
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As a result of numerical calculations, the distribution of beam deflections and bending moments were
obtained outside the crack region for different positions of the crack and its length. Analysis of numerical
calculations gives:
• Presence of a crack changes the distributions of both the plate deflections and stresses, if the crack is longer
than a half of the plate thickness. The longer the crack, the more pronounced are the changes.
• Local maximum of the deflections and local minimum of the bending stresses occur at the crack position.
• These changes are much more pronounced if a crack is located at the points of maximum bending stresses
of the equivalent homogeneous plate.

Calculations were performed for the conditions of the experiments [8]. The results are depicted for
homogeneous beam (a = 0, curve 1), broken beam (a = h, l = −0.3, curve 2) and cracked beam (a/h =
0.8, l = −0.3, curve 3). It is seen that the presence of the crack increases locally the deflections but decreases
the stresses in the beam. The ’outer’ solution gives necessary data to evaluate the stress intensity factor at
the crack tip and to predict the evolution of the crack length in time.

7. Floating beam with its edge being elastically connected to the sea bottom
Numerical solution of problem (1)-(5) with α1 = α2, β1 = β2, kT = ∞ and kl > 0 revealed that elastic

connection of the front edge of the floating beam to the bottom can essentially reduce the beam deflections
in the main part of the beam. Rigidity of the elastic connector can be adjusted in an optimal way for a
given frequency of incident wave.
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In the figure the amplitudes of the beam deflections are shown for the free-free beam (kl = 0, curve 1)
and for elastically connected beam (kl = 1000, curve 2 and kl = 700, curve 3). Parameters of numerical
calculations are given in Section 4, T = 1.429s. The curve with kl = 1300, is similar to the curve with
kl = 700. It is seen that the dimensional rigidity of the elastic connector Kl ≈ 3800kg/s2 can be considered
as optimal for the conditions of experiment [8]. For another frequency of incident wave the connector rigidity
has to be changed, which can be done with an active control system.

8. Conclusion
The method of numerical solution of the floating beam problem is based on expansions of the hydrody-

namic pressure and the beam deflection with respect to different basic functions. This makes it possible to
simplify the treatment of the hydrodynamic part of the problem and at the same time to satisfy accurately
the beam boundary conditions. Two approaches aimed to reduce the beam vibrations are described. The
effect of the vibration reduction is well pronounced and can be utilized at the design stage. Combination of
the presented approaches is expected to be perspective.
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