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1. Introduction : Water wave scattering problems involving thin barrier of arbitrary shape sub-
merged in finite depth water are generally tackled by some approximate techniques assuming linear
theory. The technique of hypersingular integral equation is demonstrated here in tackling the problem
of water wave scattering by an inclined thin barrier submerged in finite depth water. The corresponding
deep water problem was earlier investigated by Parson and Martin[1]. An appropriate use of Green’s
integral theorem produces a representation of the velocity potential describing the irrotational motion
in the fluid region, in terms of the unknown dicontinuity of the potential across the submerged barrier.
Utilization of the boundary condition on the barrier gives rise to an integro-differential equation for the
discontinuity, which is interpreted as equivalent to a hypersingular integral equation. This is solved
numerically by approximating the discontinuity in terms of a finite series involving Chebysev polyno-
mials of the second kind followed by a collocation method. The reflection and transmission coefficients
are then estimated numerically using this solution. The force and moment(about the origin) acting on
the barrier per unit width are also estimated for various positions of the barrier. Comparison is made
with available deep water results. It is observed that if the mid point of the barrier is submerged to
the order of one-tenth of the bottom depth, then the deep water results effectively hold good, and in
that case, the finite depth problem can be modelled as deep-water problem.

2. Mathematical formulation : Let a thin straight inclined barrier Γ be submerged in water of
uniform finite depth h, and let d be the depth of its mid point below the mean free surface and the co-
ordinate system be so chosen that the position of Γ is described by y = d + ta cos θ, x = ta sin θ(−1 ≤
t ≤ 1, d > a cos θ, h > d + a cos θ, 0 ≤ θ ≤ 900, θ being the angle of inclination of the barrier with the
vertical). A train of surface water waves of amplitude b0 and circular frequency σ is incident from the
direction of x = −∞ on the barrier. The incident wave potential Re{φ0(x, y)e−iσt} with

φ0(x, y) =
gb0

σ

cosh k0(h − y)eik0x

cosh k0h

where k0 is the unique positive real root of the transcendental equation k tanh kh = K, with K =
σ2/g, g being the gravity. The ensuing motion in the fluid region described by velocity potential
Re{φ(x, y)e−iσt} where φ(x, y) satisfies

∇2φ = 0, 0 ≤ y ≤ h

Kφ +
∂φ

∂y
= 0 on y = 0,

∂φ

∂n
= 0 on Γ

where ∂
∂n denotes normal derivatives on Γ,

r1/2∇φ is bounded as r → 0

where r is the distance from the submerged edges of Γ,
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∂φ

∂y
= 0 on y = h

φ(x, y) →
{

T φ0(x, y) as x → ∞,

φ0(x, y) + Rφ0(−x, y) as x → −∞
where R and T are respectively the unknown reflection and transmission coefficients (complex) which
will be determined in the course of mathematical analysis.

3. The method of solution : By an appropriate use of Green’s integral theorem in the fluid
region a representation of φ(ξ, η) at a point p ≡ (ξ, η)(0 < η < h) is found to be

φ(ξ, η) = φ0(ξ, η) − 1
2π

∫
Γ

F (q)
∂G

∂nq
(x, y : ξ, η)dsq (3.1)

where F (q) the discontinuity of φ(x, y) across Γ and q ≡ (x, y) is a point on Γ, and ∂
∂nq

denotes the
normal derivatives at q on Γ, and G(p; q) is given by (cf Banerjea et al [2])

G(x, y : ξ, η) = ln
r

r′
− 2

∫
C1

e−k(y+η)

k − K
cos k(x − ξ)dk − 2

∫
C2

e−khL(k, y)L(k, η)
k(k − K)∆(k)

cos k(x − ξ)dk

(3.2)
where r, r′ = {(x − ξ)2 + (y ∓ η)2}1/2,

L(k, y) = k cosh ky − K sinh ky, ∆(k) = k sinh kh − K cosh kh, (3.3)

and the paths C1, C2 are along the positive real axis in the complex k-plane indented below the pole
at k = K for C1 and below the poles at k = K, k0 for C2.The boundary condition on Γ produces an
integro-differential equation, which can be interpreted as the following hypersingular integral equation
in [1]

1
2π

×
∫
Γ

F (q)
∂2G(p; q)
∂np∂nq

dsq =
∂φ0

∂np
, p ∈ Γ (3.4)

for the determination of F (q), where the cross on the integral sign indicates that it is to be interpreted
as a Hadamard finite part integral.

Denoting ξ, η by ξ = ua sin θ, η = d + ua cos θ, −1 ≤ u ≤ 1 it can be shown that

∂2G(p; q)
∂np∂nq

= − 1
a2

[
1

(u − t)2
−K(u, t)

]
. (3.5)

where K(u, t) is a regular function of u, t, and can be expanded in a form suitable for numerical
computation. The details of this expansion is ommitted here. However, this expansion is an important
step in this work.

The hypersingular integral equation (3.4) can be rewritten as

×
∫ 1

−1

[
1

(u − t)2
+ K(u, t)

]
f(t)dt = l(u), −1 < u < 1 (3.6)

f(t) =
gb0

σ
F (t) (3.7)

and l(u) is a known function (it is related to φ0). The equation (3.6) is to be solved subject to the
condition that

f(±1) = 0. (3.8)
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As in [1] f(t) is approximated as

f(t) = (1 − t2)1/2
N∑

n=0

anUn(t) (3.9)

where Un(t) is Chebyshev polynomial of the second kind. and an(n = 0, 1, ..N) are unknown complex
constants. Substituting (3.9) into (3.6), we obtain

N∑
n=0

anAn(u) = l(u), −1 < u < 1, (3.10)

where An(u) = −π(n + 1)Un(u) +
∫ 1

−1
(1 − t2)1/2K(u, t)Un(t)dt.

To find the unknown constant an(n = 0, 1, ...N) we put u = uj(j = 0, 1, ..N) in the relation (3.10)
to obtain the linear system

N∑
n=0

anAn(uj) = l(uj) j = 0, 1, ...N (3.11)

The collocation points uj(j = 0, 1, ..N) are chosen as [1]
The reflection and transmission coefficients R and T can be found in terms of a series involving

an by making ξ → ∓∞ in the expression for φ(ξ, η) given in (3.1). Expressions for R, T involve
certain integrals which can be evaluated numerically for different values of the physical parameters
Ka, h/a, d/a and the angle θ of inclination of the barrier with the vertical. Thus once the complex
constants an(n = 0, 1, ..N) are found by solving the linear system (3.11), numerical estimates for |R|
and |T | can be obtained. Also |R|2+|T |2 must be unity from the consideration of energy principle, this
can be used to check the correctness of numerical estimates obtained for |R| and |T |. The amplitudes
of the force and moment (about the origin) per unit width of the barrier can also be estimated
numerically once an(n = 0, 2, ..N) are obtained.

4. Numerical results : The numerical estimates for |R| converges fairly rapidly with N . An
accuracy of almost five decimal places has been achieved by choosing N = 3 or 4. Also the correctness
of the numerical method is checked by estimating |R| for the case of a submerged vertical plate (θ = 00)
and comparing with known results obtained earlier in [3] by eignefunction expansion method. Again,
for θ = 450, a/h = 0.4, d/h = 0.4, |R| and |T | are estimated by the present method, and it has been
verified that |R|2 + |T |2 almost coincide with unity.
|R| is depicted against the wave number Ka in figure 1 taking θ = 450 for different values of d/h

keeping d/a fixed. It is observed that when the depth of the mid point of the inclined barrier is
one-tenth of the bottom depth (d/h = 0.1), the results almost coincide with deep-water results given
in [1] and shown in the same figure by crosses. The bottom effect appears to be significant in the
low wave number range. This may be attributed due to the fact that in the low wave number range,
the wave length of the incident wave train is large enough to have adequate penetration below the
free surface so as to be affected significantly by the bottom while in the large wave number range the
reverse phenomenon occurs and as such there is no appreciable effect is observed.

In figure 2 |R| depicted against Ka for an almost horizontal barrier by taking θ = 890. As observed
in [1] for the case of deep water, zero of |R| are seen to occur for the case of finite depth water. The
zeros of |R| begin to appear only when the inclination of the barrier with the vertical is of the order
of 800. This is not shown here. The non-dimensional amplitude of the force and moment(about the
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origin) acting on the barrier per unit width are depicted in figure 3 and 4 respectively. It is observed
from these figures that the amplitudes decrease with the increase of θ. These results are plausible.

5. Conclusion : Water wave scattering by an inclined barrier plate submerged in finite depth
water is investigated by using a hypersingular integral equation formulation. Numerical estimates for
the reflection coefficient, amplitudes of force and moment acting on the barrier are obtained fairly
accurately and are depicted graphically against the wave number and compared with deep-water
results. Also, some numerical results for an almost horizontal barrier are obtained as special cases,
and these agree with known results obtained by other methods. The technique used here is now
being used to tackle water wave scattering problems involving a curved barrier in the form of an arc
of a circle, ellipse etc. submerged in finite depth water . The method can also be used with some
modification for a surface piercing curved barrier.
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