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1 Introduction

In this paper, we present a new integral equation to describe the motion of an air cushion supported
platform. These platform are studied as a design concept for floating airports. The amplitudes of motion
of such body are expected smaller and a better repartition of pressure on the body reduces the mechanical
structural loads. In this paper, we study the behavior of an air cushion supported floating platform exited
by waves. The platform consists of a rigid body and an air cavity beneath it. We assume that there is
no air leakage. For clarity, we restrict our theory to heave motion.

We assume the flow being potential reducing the problem to the determination of a potential ® and use
usual assumptions of linearized potential theory. The platform’s boundary ¥ is split into the boundary
¥ for the wetted part of the platform, and ¥ which is the free surface underneath the platform and
submitted to air cushions pressure. An integral equation is then given for the determination of the
potentials of diffraction and radiation. It is possible to extend the method to several air cushions,
connected or not, and to take into account the pitch motion.
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Figure 1: Definition of the geometry

2 Boundary conditions

We define 5 to be the surface elevation under the cavity, S the interface of this cavity at a distant of
H meter from the free surface, V.s and p.s the volume and pressure in the cavity when the platform is
at rest. The instantaneous pressure p. is supposed to be uniform in the platform cavity. We have the
following kinematic and dynamic condition at the interface Xo:
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The change of pressure can be determined by the change of the volume of cavity. The air compression
obeys the adiabatic law and we can write:
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where ¢ is the platform heave motion and v = 1.4. Combining relations [1] and [2] leads to the boundary
condition on Xs.
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a8, which is a non-dimensional number, represents the ratio of the force due to air compression by the
buoyancy force.
In frequency domain, we write ®(z,t) = ¢(z) e~"* and we have then the boundary conditions:
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We also add the usual linearized free surface condition at z = 0 and the Sommerfeld radiation condition
at infinity.

3 Boundary value problem

The fluid domain is split in two regions, separated arbitrary by an interface dD. The platforms stays in
the region D~ and the region towards infinity is defined as DT. The potential function in Dt is written
as the superposition of the incident wave potential and a diffracted wave potential as follows

o(z) = ¢ () + ¢ (2)

In D*, the total potential is denoted as ¢~ (z). At the dividing surface D we require continuity of the
total potential and its normal derivative.

We introduce the Green’s function G(z, £) that fulfills AG = 4wd(z — &), the free surface and the radiation
condition. - B

Applying Green’s theorem for ¢t and ¢~ leads to the following formula:

forx € D™ :
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The integrals over Sgo, and S become zero, due to the free surface condition for G, ¢t and ¢~. Adding
up the two expressions in [4], leads to:

Arg = // ——g— d5+// [¢——ga¢_]) for x € D"

or  dmém = // ¢_)d5’+4 gine



When x tends to X, we have then
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We decompose the potential into a potential of diffraction and a potential of radiation
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diffraction:
From [3], we write the boundary conditions for ¢:

.

Integrating [3] on X5 and re injecting the result in the equation, we obtain:
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Following Noblesse, we can write:
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The potential ¢ is then found to be solution of the integral equation:
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We apply the same procedure for the radiated potential. The boundary equations read:
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and we find:
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We obtain the integral equation for ¢’ :
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4 Numerical results

We apply our model to a 250m long and 78m wide rectangular platform. The total height is 15m and
the water free surface in the air cushion is at distance of 10m from the mean sea level. The vertical
walls thickness, surrounding the air cavity, is 4m for the 250m long side walls , and 6m for the 78m
long end walls. With these values, we find @ = 2.431075. In Figure [2] and [3], we compute the added
mass and damping coefficients for heave motion. In figure [4] we compare the amplitude of the platform
elevation for a unit height incoming head wave with the experimental results of Pinkster. The agreement
is good. In figure [5], we compute the wave elevation amplitude in the air cushion. We check that, in
agreement with our assumptions, no resonant mode will generate waves that hit the horizontal deck of
the air cushion platform.

We first note that we obtain a negative added mass for a large range of frequency and also with dis-
continuities. This is due to the small width/length ratio. For wider platform this phenomenon never
occurs.
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Figure 2: Added mass Figure 3: Damping
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Figure 4: RAO

Figure 5: Wave elevation
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