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Abstract

Sloshing waves in a three dimensional tank are modelled using a pseudo spectral method based on fully
non linear potential theory. The formulation is based on the expansion of the velocity potential in series
of the natural modes of the tank geometry. Mode coe�cients of the potential and nodal values of the free
surface elevation are determined by accounting for the fully non linear kinematic and dynamic free surface
conditions. The theoretical quasi-exponential convergence of the model with respect to the number of
modes is veri�ed in the case of free oscillations in a �xed 2D rectangular tank. Further results are given
for 2D or 3D tanks submitted to forced motions. These results are found to be in very good agreement
with available data.

Introduction

Spectral methods are characterized by the expansion of the solution in terms of global functions. When
orthogonal functions are used, it can be shown that the approximation error decreases faster than alge-
braically. This behavior is referred to as exponential, or spectral convergence. The counterpart of this
attractive feature is mainly found in the limitation to simple domains. However, their computational
performances are such that spectral methods are prevailing for large scale computations in certain areas
of 
uid dynamics. This is for example the case in numerical weather forecast. For a review of the ap-
plication of spectral methods in general computational 
uid dynamics, see Hussaini & Zang (1987), or
Fornberg (1995). In applications to free surface inviscid 
ows, it is possible to use orthogonal functions
satisfying Laplace's equation, so that coe�cients of the spectral expansions are determined through the
free surface conditions only. Fenton & Rienecker (1982) solved nonlinear 2D wave propagation problems
using spectral expansions both for the potential and the free surface elevation, under the assumption of
space periodicity. In Dommermuth & Yue (1987) , three dimensional wave problems were simulated using
a spectral method based on a perturbation expansion of free surface conditions. In Kim et al (1998)
, fully non linear simulations in 2D rectangular tanks of in�nite depth were reported. In Chern et al
(1999), a spectral method based on Chebyshev polynomials was applied for solving fully nonlinear 2D free
surface problems in a rectangular 2D tank, with the advantage of a �xed computational domain obtained
by applying a time-depending �-transform to the vertical co-ordinate. In the present paper, a spectral
approach is applied to fully non linear sloshing waves in 2D or 3D rectangular tanks, using the natural
modes of the 
uid domain as a basis for the spectral expansion, and solving the boundary value problem
in the physical space.

Mathematical Formulation and Numerical Solution

We consider a three dimensional tank, partially �lled with an inviscid 
uid. A cartesian �xed co-ordinate
system 0xyz is de�ned. Assuming potential 
ow, a problem for a scalar velocity potential � is set up.
The potential has to satisfy Laplace's equation in the 
uid domain, as well as Neumann conditions on the
tank walls and bottom:

��(M; t) = 0 M 2 D (1)
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In the present formulation, we suppose a single-valued free surface F , represented by z = �(x; y; t).
The kinematic and dynamic conditions at the free surface are thus formulated as follows (with implicit
non-dimensionalization with respect to the mean water depth h and the acceleration of gravity g ):
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Then, we introduce a spectral expansion of � in series of natural modes of the tank:

�(x; y; z; t) =
1X

m=0

1X

n=0

amn(t)	mn(x; y; z) (5)

where 	mn are eigen functions of the 
uid domain, satisfying equations (1) and (2), and amn are time
depending modal amplitudes. Here we consider a parallelepipedic tank, for which eigen functions are
given by:

	mn(x; y; z) =
cosh(kmn(z + 1))

cosh(kmn)
cos(

��!
kmn

�!x ) (6)

where �!x = (x; y) and
��!
kmn = (m�=Lx; n�=Ln) is the wave number associated to each mode.

After truncation of the spectral expansion, equation (5) is fed in the dynamic free surface condition:
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In the solution of wave propagation problems using a spectral approach, the assumption of space
periodicity may be introduced to further expand the free surface elevation in spectral Fourier series [3].
Here for fully non linear sloshing problems, the free surface elevation cannot a priori be expanded in
Fourier series of horizontal co-ordinates. Thus �(x; y; t) is represented by its nodal values at free surface
collocation points, on which free surface conditions are imposed.

Starting from given initial conditions, the initial boundary value problem is thus solved for N� modal
amplitudes of the potential and N� nodal values of the free surface elevation. A standard 4th order Runge-
Kutta scheme is applied for advancing the solution in time, by integrating the free surface conditions as
ODE for aij and �k.

The system of �rst order di�erential equations for aij is obtained at each substep of the time marching
procedure by solving a system of linear algebraic equations resulting from the application of the dynamic
condition (7) at a su�cient number of collocation points on the free surface. This is in contrast with other
schemes for inviscid free surface 
ows in which nodal potential values are updating by directly applying
the dynamic condition. Derivatives of the potential appearing at the right-hand sides of the FSC's are
computed from the spectral expansions, while �nite di�erence formulas are applied for the derivatives of
the wave elevation.

When the problem is solved on the basis of a perturbation expansion procedure, see e.g. [4], the
resulting time-invariant kernel is the same at each order of the expansion, and a FFT procedure can be
applied, with a O(N�Log(N�)) e�ort at each time step. In the present fully nonlinear scheme, the kernel
of the linear system formed of values of 	mn(x; y; �) is solution-dependent and has to be reevaluated at
each sub-step. A preconditioned GMRES iterative solver is applied for solution of linear systems. The
resulting cost is O(N2

�
) for a well-conditioned system, i.e. when the number of iterations at convergence is

only weakly dependent on the size of the problem. The other signi�cant part of the computational e�ort
is devoted to the assembly of the kernel and to the computation of potential derivatives, thus the global
e�ort is also O(N2

�
).

Numerical Results

2D free motion

In this section we consider a 2D tank, with initial conditions �(x; y; 0) = �0(x; y) and �(x; y; z; 0) = 0.
The 
uid is initially at rest, and the initial free surface pro�le corresponds to the �rst linearized eigen



mode, with an initial steepness (�max � �min)=Lx = 10%. The tank length is Lx=h = 2: This simple test
case aimed at a veri�cation of the convergence properties of the scheme. Free motion simulations over 7
dominant periods were repeated with increasing number of modes and free surface nodes: N� = N� =
11; 21; 31; 41; 51; 61; 71 . The maximum di�erence between the instantaneous 
uid energy and the initial
(potential) energy has been computed in each case. Results are plotted in �gure 1. The expected spectral
convergence is obtained, with a max relative error of 10�4 on the energy with 71 modes. The error on the

uid volume is about 10�7, and does not vary signi�cantly with N�. Free surface pro�les corresponding
at each successive maxima of the free surface elevation are collected in �gure 2.
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Figure 1 (left): Convergence of the relative energy error with respect to number of modes
Figure 2 (right): Successive extrema of the free surface pro�le

2D forced motions

Here we consider a 2D tank with 
uid initially at rest, submitted to a forced motion x(t) = a sin(!t).
The problem formulation is modi�ed to account for the moving co-ordinate system, following closely
the approach of Wu et al (1998), in which nonlinear sloshing problems are solved using a �nite element
method. The tank length is Lx=h = 25:, a very shallow water case, for which strong nonlinear e�ects
are anticipated. The reduced motion amplitude is a=h = 2:5. The angular frequency is ! = 0:9973!0,
where !O is the frequency of the �rst linearized natural mode. This is just a case presented in [7]. The
simulation has been run with 40 modes . Figure 3 below is the equivalent of �gure 9 in [7], plotted with
the results of our spectral model. A bore is formed at the end of the simulation (�gure 3-b). Results
from both approaches seem very similar up to the formation of the bore, at about t = 26: (�gure 3-a).
Then results di�er slightly. With the present spectral method, a steeper wave front followed by very short
waves are exhibited. However, no convergence tests have been performed to date on this case. Such tests
will be available for presentation at the workshop.
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Figure 3 : Wave pro�les for forced motions, Lx=h = 25:; ! = 0:9973!0� a=h = 2:5 . (a): t = 0 � 30:
(b): t = 26 � 36:



3D forced motions

A shallow water case is now considered in the case of a 3D tank: Lx=h = 25:, Ly=h = 25: The parameters
corresponding to case (H) in table 1 of Wu et al (1998) have been selected. The tank is subject to a sine
motion along the �rst diagonal of the undisturbed free surface, x = ax sin(!xt); y = ay sin(!yt), with
ax = ay = 1:2h and !x = !y = 0:998!0x. The simulation was performed with 1600 (40x40) modes. We
give below four examples of free surface pro�les in the tank. Longer simulations and comparisons with
results given in [7] are underway and will be presented at the workshop, together with energy and volume
checks.
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