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1 INTRODUCTION

The interaction of water waves with vertical cylinders has been investigated with special attention in
our community those last years. Theses studies were mainly motivated by projects of very large floating
structures, like airport, designed to be supported by a huge number of truncated vertical cylinders.
When the cylinders are bottom standing, the velocity potential may be found by the semi analytical
method of Linton and Evans (1989) [1]. This formulation was used to study some specific phenomenon
linked to wave propagation in such regular pile network such as trapped mode [3]. Recently [2] P.
Mclver, applying the theory and results of solid-state physics to the propagation of water waves in
such infinite network of cylinders, showed that the phenomenon of stopping band and passing band
may occur also in this hydrodynamic context.

In the present study, the question was to determine if the equivalent of an index of refraction could
be defined for the propagation of the water waves through an ocean area occupied by evenly spaced
vertical piles when the number of cylinders increases while filling density is kept constant, like in fig.2.

Figure 1: notations. left: cylinders filling a triangular area - right: refraction of a ray across a prism

To study this question, we have adopted an homogenization approach to the problem, as Evans &
Shipway in [4], but using the ray theory of geometrical optics to define an experimental setup for the
measurement of the index of refraction. We use the same classical experience as in the study of light
propagation through a prism. It is well known that, if the prism medium has an index of refraction of
says, n different from the index in the outer open ocean ng, then the Snell-Descartes law states that:

ngsini = nsinr
nsinr’ = ngsind

(1)



This law is usually expressed, in linear water wave refraction theory, using the wave celerity instead
of the refraction index, reading: (sini)/Cy = (sinr)/C.

A prismatic area (i.e: a triangle view from the top fig.1), filled with cylinders of equal diameters,
is exposed to an incident regular wave train described by the usual Airy potential. Two parameters
may be used to describe the medium inside the prism: the density d (or solidity factor in [4]) which
is the ratio of the total cross section area of the cylinders divided by the triangle surface, and the
homogeneity factor h which will be defined here as the number of cylinders per unit surface.

Let L be the length of the base of the triangle, [ the distance between the extreme circles centers
on the base raw, a and b the horizontal and vertical distance between consecutive circles centers, r
the radius of the circles (see fig.1). Let p denotes the number of cylinders on the base raw (p = 4
in fig.1), then N the total number of cylinders equals N = Zf;ol(i +1) = p(p+1)/2. Choosing an
equilateral triangle leads to the expression of the density o = 4wNr2//3L2, and the homogeneity
factor h = 4N//3L2.

Figure 2: increasing the homogeneity factor h while keeping the density constant: d = 0.5

2 NUMERICAL EXPERIMENTS

The numerical experiments consists in first solving the above problem for the potential amplitude by
the Linton-Evans method [1], and then by plotting and analyzing the downstream wave field in order
to identify, when possible, a transmitted ray refracted of a certain angle to be measured. From this
measured angle, the refraction index is derived through the Snell-Descartes law eq.(1).

The computation of the complex potential amplitude follows exactly the method described in [1].
The total potential is then given by
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where we have kept the notations of the cited paper; Hy being the Hankel function of order n, and
Zyn = J)(ka)/H} (ka) , with J,, the Bessel function of the first kind and order n. The coefficients Aj,
of the expansion (2) of the scattering potential are the solutions of the system
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The first thing we did was to find a range of the parameters (density, homogeneity, wavelength,..)
for which the phenomenon can be observed. It is not so evident, because due to other phenomena



like partial reflections, medium inhomogeneity, ..., at lot of rays emerge from the triangle, generating
confuse refraction figures. Here, for L =1, d = 0.5, 8 = 0 and p = 15, a large range of wavelengths was
swept in order to find the best illustrative value. This occurs when the wavelength A is approximately
equal to the horizontal cylinders spacing a.
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Figure 3: amplitude of the diffraction field showing the refracted ray direction L =1, d = 0.5, p = 15,
8=0.

Measurements of the refraction angle are made directly on the plot of the wave field amplitude,
in the quadrant where the ray must logically emerge. For the sake of legibility the scattering field is
used for this analysis rather than the total wave field. An example of such a plot is given in fig.(3).

151

i e

refraction index
&
f ]

135 |
13, 5 16 15 20

Figure 4: convergence with homogenisation

For this case, the measured refraction index was n = 1.38. The convergence to this value with
increasing homogeneity is shown in figure (4) where the index is given as a function of the number p
of cylinders on the base raw.

The next step was to investigate wether or not the observed phenomenon could be actually at-
tributed to wave refraction. So, from the above case, we varied the incidence angle 3 and we checked
the behavior of the refraction angle with regard to Snell-Descartes law eq.(1).Results obtained when
varying the angle of incidence from -10 to 30 degrees are plotted in figure (5). The hydrodynamic re-
sults are in good agreement with the optical reference law; we can therefore conclude that the observed
deviation phenomenon is most probably of refraction nature, in the common sense.

Finally, a comparison of our results was made with the continuum model proposed by Evans and
Shipway at the last Workshop [4]. Their approach was based on an analogy of the equations of the
2D hydrodynamic problem with an acoustic model of the air flow in exchanger tube banks. Following
their approach, the ratio between the wave velocity outside and the velocity inside the region filled by



cylinders, which is nothing but the refraction index as defined here, should be equal to n = /1 + d2. In
order to compare our results with this proposal, we have performed a series of numerical experiments
at zero incidence, with a fixed wavelength and a fixed homogeneity factor, and we varied the density in
the range [0, 0.5]. Results are plotted in figure (6). Differences up to 20 percents are observed between
these two approaches. It is difficult to conclude about these moderate discrepancies because on one
side, our approach suffer from experimental uncertainties and numerical limitations of the number of
cylinders, while the homogenisation technique used in the acoustical continuum model is based on
several important assumptions.
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Figure 5: Hydrodynamical versus optical

Figure 6: comparison with Evans-Shipway
behaviour with varying incidence

continuum model

3 CONCLUSION

We report here an attempt at verifying the homogenisation approach of wave propagation through
an ocean area filled with vertical evenly spaced cylinders proposed by Evans and Shipway at the last
Workshop [4]. The basic optical technique of light propagation across a prism is used as a model to
analyse water wave propagation across a triangular zone of piles. First of all we had to localize the
phenomenon in the whole parameters space; then, for cases where it was clearly observable, we verified
that the deviation angle follows the Snell-Descartes law of refraction as expected. The convergence
with the homogeneity factor has been tested for several cases, and the measured variation of the
refraction index with the pile network density agrees reasonably well with the formula proposed by
previous researchers. Nevertheless, it must be pointed out that the phenomenon appeared clearly only
for few cases among all our attempts. In the other cases, many spurious rays made the refraction
figure indecipherable, probably due to the isotropy of the network and the low level of homogenisation
we used here, for computer time economy reasons. The Bragg scaterring phenomenon as described
by Mclver [2] in this application, could be also the source of unexplained results in some wavelength
ranges.
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