Steady Free-Surface Flow in Water of Finite Depth
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The steady free-surface potential flow generated by a source advancing at constant horizontal speed is
considered by making use of the formulations developed by Chen & Nguyen (2000) in water of finite depth.
Further to that work on the singular and highly-oscillatory properties of the steady free-surface potential
near the track of the source located close to or at the free surface, another peculiar property is analyzed
here. It is shown that the classical formulation suffers a non-uniformity when the waterdepth tends to
infinity. A uniform formulation is then found by extracting the constant terms - one of them being infinity!
Furthermore, the wave component of steady flow in subcritical and supercritical regimes is presented.

1. Green function of steady flow in water of finite depth

Under the reference system moving with the source at the speed U along the positive z-axis defined by its
(z,v) plane coinciding with the mean free surface and z-axis oriented positively upward, the ship-motion
Green functions G(g, Zs) representing the velocity potential of the flow created at a point 5 =(&n1,() by a
steadily-advancing source of unit strength located at a point Zs = (x5, ys, 25 ), can be expressed as

G=G5+GF (1)

where GT accounts for free-surface effects and G° is defined in terms of simple singularities

anGS = 3 (- { 1N+ (C—2a + 2002 + 1//7% + +zs+2nh)2} 2)

in which r = \/(§—x4)? + (n—vs)? and h = H/L is the adimensional waterdepth with respect to the reference
length L. The simple part G° defined by (2) satisfies G° = 0 at the free surface (¢ = 0) and dG* /3¢ = 0
at the sea bed (( = —h). The free-surface part G in (1) is defined by a double integral representing the
Fourier superposition of elementary waves

A e—ilaz+By)
4 GF = [lim dﬂ / do ———— e (3)
with (z,y) = (£—2s,7—vys) and A defined by
A = cosh k(C+h) cosh k(z,+h)/ cosh? kb with k= /a2 + 32 (4)
Furthermore, the dispersion function D in (3) is given by
D = F?a — ktanh kh (5)

in which F = U/+/gL is Froude number with g the acceleration of gravity. The function X in (3) is given
by ¥; = —sign(«) and is significant in the region D(«, 8) =~ 0.

If we use the polar Fourier variables (k,8), the equation (3) becomes

A e*ik(z cos 6+y sin )
Ar*Gl = ]
ma Ejmg/d@/dk D/k — iesign(cos0) (©)

in which A is given by (4), and by using (5) D/k becomes :
D/k = k[F? cos® 6 — tanh(kh)/k] (7)

Due to the symmetry properties of the dispersion function D(k, ), it can be easily verified that the free-
surface part of the Green function G given by (6) is symmetrical with respect to the axis y =0 and that its
imaginary part is nil. The connection to the conventional form (eq.13.37 in Wehausen & Laitone, 1960) can
be obtained by using the residue theorem and exploiting the symmetrical properties of the Fourier integral.



2. Non-uniformity of the Green function G*

The free-surface component G is defined by the double Fourier integral (6) in which the amplitude function
A and the dispersion function D are dependent on the waterdepth A as a parameter. It can be easily verified
that the limit of the amplitude function A(k, k) given by (4)

lim { lim A(k, h)} — lim {]iii%A(k-,h)} —1 (8)
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However, as far as the dispersion function D(k, h) is concerned, we have from (7)

lim {hlim D(k, h)} = k(F%kcos® 0 — 1) = O(k) (9a)
and
Jim {]ln% D(k, h)} = k2(F%cos® 0 — h) = O(—k?h) (9b)

by using the development tanh(t) =t + O(t3) as t = kh — 0 in (7).

If the limit (9a) is used, we usually say that G¥' given by (6) tends to the Green function in deep water.
However, as the Fourier variable k is involved in the integral representation of GI* (6) and if the limit (9b)
should be used, different values of G may be obtained since

0 p>1/2
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hgrolo{k}LH?HoD(k’h)} 1 p=1/2 (10)
—co p<1/2

This non-uniform behavior of the dispersion function implies that the classical expression of the Green
function G¥' given by (6) may not be uniform in the limit of deep water, and that some undesirable terms
such as constants may be embedded in (6). To identify them, we perform a local analysis of the Green
function G¥ corresponding to the Fourier integral in the region k< 6 < 1. We write

47’1’2GF — /de dk =9 Do/k —lk(;ccose-i—ysine) (]])

in which Ao = [AGk. ) 1 (74 1)] oo = € (14 O(3?) (12)

with o a positive real parameter and
Do/k = D(k,h)/k|g—o = k(F?cos? 0 — h) + O(6%) (12b)

The parameter ¢ is introduced to facilitate the analysis as we will extend 6 — oo, and for the sake of
numerical evaluation of the resultant integral. The value of ¢ is hoped to not affect on the results of the
analysis. It will be shown that the undesirable terms are indeed independent of o.

Introducing above expressions into (11), G[;F may be estimated as

T do o] efk[chri(zcosGersin@)]
2~F _ 4 2~F _
4“’”0*4“’”6‘6%0*/ Froos2d—h iy | k
T de
— B reer i lim E1{I€[O‘+Z($COSQ+ZJSIH9)]} (13)

where E1{-} is the exponential integral function defined in Abramowitz & Stegun (1967). At x — 0, the
exponential integral function can be written

Ei{klo +i(xcos@ + ysin)]} = —logk —~ —log[o + iR cos(8 — ¢)] + O(k) (14)
where v = 0.57721 ... is Euler’s constant, and (R, ¢) defined as
R=+\/22+y2 and ¢ = arctan(y/z)
Using (14) in (13), we have

AT GE = O + Cp + 4m%GE (15)



with m 27 log K

Coo = li for F/Vh<1 ; Cxw=0 for F/Vh>1 16a
,Hoh/ —F2/h / / (16a)
2Ty

Co=——t— for F/Vh<1l ; Co=0 for F/\Vh>1 16b
0= T Fh / 0 / (16b)

N ™ loglo + iR cos(0 — ¢)]
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Both Cy and Cy are considered as constant since they are independent of the variables (£,7,¢) and
(s,Ys, zs). They are zero in the supercritical regime (F/yv/h >1) but not in the subcritical regime (F/vh <1).
Similar to the dispersion function analyzed in (10), the constant Cy at F//v/h <1 given by (16a) is non-
uniform and is equal to infinity if h is finite. The constant Cy (16b) is finite and disappear in deep water
while the term ég is represented by a single integral (16¢).

3. Uniform formulation of the Green function

Further to the foregoing analysis, we may now define a uniform formulation of the Green function by simply
subtracting the constant terms Co and Cy from the free-surface component G :

G=G°+G" with G¥ =GF — (Cou+Co)/(4n?) = GF + GF (7)

with the new free-surface component G defined by
G GF F — ]1m /dQ/dkA —ik(x cos 04y sin 0) (]8)

with A

A exp(—ko)

D/k —iesign(cos8)  k(F2cos20 — h)

Tt can be shown that A = O(1) at & — 0 and has uniform limit for A — co.

4. Wave component of the Green function
Following the analysis by Noblesse & Chen (1995), the free-surface part G can be decomposed as the sum

of a wave component and a nonoscillatory component significant only in the near field. The wave component
is defined by the single Fourier integral along the dispersion curves defined by the dispersion relation D=0

i 3 / ds (81 + Sp)e 75 A4/ VD)] (20)

where )~ ,_, means summation over all the dispersion curves and ds is a differential element of arc length
of the dispersion curve. The function X1 =—sign(«) as already noted and the function Xs is given by

Yy =erf(zDy +yDg) (21)

where (Do, Dg)=(80D/0a,dD/0f) and |VD| = /D2 + D%. The function erf{-} in (21) is the usual error
function defined in Abromowitz & Stegun (1967).

From (5), D = 0 defines two distinct curves in the left-half (o < 0) and right-half (o > 0) planes
symmetrical with respect to a =0. Both dispersion curves are symmetrical with respect to =0 as well.
The dispersion curves k= k() for 0 <8 < /2 are depicted on Figure 1. The curves from right to left are
associated with the value of F/vh = (0,0.8,0.9,0.95,1,1.05,1.1,1.2,2,3,5), respectively. It can be verified
that the imaginary part of G given by (20) is nil due to the symmetrical properties of the dispersion curves,
and the wave component G" is depicted on Figures 2 and 3 for F/ Vh=0.95 (subcritical regime) and 2.0
(supercritical regime), respectively.
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Figure 1: Dispersion curves depending on the values of F/ Vvh
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