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1 Introduction

Several numerical techniques have been recently devel-
oped to deal with the complex free surface topology
induced by the wave breaking (e.g. Tulin & Landrini
2000, Sussman & Dommermuth 2000). However, al-
though these approaches are strictly needed in the free
surface region, their use far from the interface is expen-
sive and neither really necessary. For instance, when
studying the wave breaking induced by a submerged
body an accurate description of the flow field close to
the body is not needed while the computational effort
can be focused about the free surface. For this rea-
son, a domain decomposition approach is built which
couple the Navier-Stokes solver, employed close to the
interface, with a potential solver able to describe the
flow in the body region.

In a previous work (Iafrati et al. 2001), an un-
steady Navier-Stokes solver coupled with a Level-Set
technique has been developed to study wave breaking
induced by bodies moving beneath the free surface. In
this work this approach is used in the free surface re-
gion, where the unsteady Navier-Stokes equations are
solved by using a finite difference approach, while a
Level-Set technique is used to follow the interface dy-
namics. Throughout the boundary of the computa-
tional domain velocity is assigned. In the body region,
a boundary integral representation of the velocity po-
tential is used with Neumann boundary conditions on
the body contour and at inflow and outflow. Concern-
ing the boundary conditions on the matching surface,
two approaches are developed. In the first one, say
Dirichlet type (DT), both the pressure and the veloc-
ity fields obtained from the Navier-Stokes solver are
used within the unsteady Bernoulli’s equation to ob-
tain the velocity potential on the matching surface. In
the second one, say Neumann type (NT), only the nor-
mal velocity obtained from the Navier-Stokes solver is
used as a boundary condition on the matching surface.
In both cases, the solution of the boundary integral
formulation provides the velocity field on the matching
to be used as boundary condition for the Navier-Stokes
solver at the next time step. It is important to remark
that, although here applied only in 2D problems, the
proposed approaches are easily applicable also to 3D
flows.

In the following a brief description of the Navier-
Stokes solver and of the Level-Set technique is given
while further details can be found in Iafrati et al. (2001)
and in Iafrati et al. (2000). The domain decomposition
approach is applied to the wave system generated by a
bump on the bottom of a channel and by a submerged
hydrofoil. Comparisons with the full Navier-Stokes so-
lution and with results obtained by a fully non linear

boundary element solution are presented.

2 Two fluid Navier-Stokes solver

The flow of air and water is approximated as that of
a single incompressible fluid whose density and viscos-
ity change across the interface. In an Eulerian frame
of reference, local fluid properties changes with time
only due to the interface motion. If surface tension
and turbulence effects are neglected, the dimensionless
unsteady Navier-Stokes equations in generalized coor-
dinates are:
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where ui is the i−th cartesian velocity component and
δij is the Kronecker delta. The quantity

Um = J−1 ∂ξm
∂xj

uj (3)

is the volume flux normal to the ξm iso-surface and J−1

is the inverse of the Jacobian. In equation (2)

Fr =
Ur√
gLr

, Re = (UrLr%w)/µw

are the Froude and Reynolds number, respectively. Ur,Lr
are reference values for velocity and length while %w, µw
are the values of density and dynamic viscosity in water
and are used as reference values. The quantity

Gmn = J−1 ∂ξm
∂xj

∂ξn
∂xj

(4)

is the mesh skewness tensor.
The numerical solution of the Navier-Stokes equa-

tions is achieved through a finite difference solver on a
non staggered grid. Cartesian velocities and pressure
are defined at the cell centers whereas volume fluxes are
defined at the mid point of the cell faces and are com-
puted by using a quadratic upwind scheme (QUICK)
to interpolate cartesian velocities.

The momentum equation is integrated in time with
a semi-implicit scheme: convective terms and the off-
diagonal part of the diffusive ones are computed ex-
plicitly with an Adam-Bashfort scheme while a Crank-
Nicolson discretization is employed for the diagonal
part of the diffusive terms. A fractional step approach
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is used: an auxiliary velocity field is obtained by ne-
glecting the pressure term on the right hand side of the
momentum equation (predictor step) and in a second
stage (corrector step) the velocity field is updated by
adding a pressure correction contribution. The latter
is obtained by enforcing continuity thus yielding to a
Poisson equation which is solved by using a multigrid
technique. When the velocity is assigned at the bound-
ary of the computational domain, Neumann boundary
conditions are obtained for the Poisson equation.

3 Free surface motion via Level-
Set technique

In order to reconstruct the distribution of fluid proper-
ties in the computational domain, the actual location
of the interface has to be captured. In the level-set
technique fluid properties are assumed to be related to
the signed normal distance from the interface d(x, t).
At t = 0 this function is initialized assuming d > 0 in
water, d < 0 in air and d = 0 at the interface (Sussman
et al. 1994). The generic fluid property f is assumed
to be f(d) = fw if d > δ, f(d) = fa if d < −δ and

f(d) = (fw + fa)/2 + (fw − fa)/2 sin(πd/(2δ))

otherwise. In the above expression δ is the half width
of a transition region introduced to smooth the jump
in the fluid properties and it is chosen so that the jump
covers at least four cells. During the evolution the dis-
tance is transported by the flow, thus the equation

∂d

∂t
+ u · ∇d = 0 (5)

is integrated to update the distribution of the distance
function. The interface being a material surface, its
location is captured by reconstructing the level d = 0.
In order to damp disturbances outgoing from the com-
putational domain, a numerical beach model is intro-
duced in the equation for the distance. Two beach
regions are introduced close to the two boundaries of
the computational domain. If y = 0 is the still wa-
ter level, in the beach regions equation (5) takes the
following form:

∂d

∂t
= u · ∇d− ν(d+ y) (6)

where ν is zero at the inner limits of the beaches and
grows quadratically toward the boundaries of the com-
putational domain. Results presented below are ob-
tained by using ν = 2 at the end of the domain.

To keep constant in time the width of the transition
region the distribution of the distance function is peri-
odically reinitialized by computing, at each cell center,
the minimum distance from the interface. This point
is found to be very important when using the level-set
technique in conjunction with the domain decomposi-
tion approach. First attempts (Iafrati et al. 2000) ex-
hibited an excessive damping of the produced following

wave. The reason for this excessive damping has been
found to be in the need to use a time step smaller than
the maximum ∆t allowed by the Courant constraint
(CFL = 1). Indeed, when integrating the motion of
the interface with a time step much smaller than that
allowed by the condition CFL = 1, a decay of the ac-
curacy occurs (Sussman & Puckett 2000). On the basis
of the above consideration, the re-initialization of the
distance function is carried out with a period equal
to the time step given by the respect of the condition
CFL = 1.

4 Domain decomposition

The whole fluid domain is subdivided in two regions:
a free surface region and a body region (Fig. 1). In
the former the method described in the previous sec-
tions is used. In the latter, a potential flow is assumed
and a boundary integral representation for the velocity
potential φ is adopted. Two procedures, differing by
the way in which the information are exchanged be-
tween the two domains, are developed. According to
this, depending on the type of coupling, an overlapping
(matching region) of the two domains can exist.

To illustrate the matching procedures, the wavy
flow induced by a bump on the bottom of a channel
is considered. The bump, whose shape is described by
the formula

y(x) = −1 + 0.1(1− 8x2 + 16x4) x ∈ (−0.5, 0.5),

suddenly starts with a constant velocity, U∞ = (−1, 0),
from the right to the left. In the results presented be-
low it is assumed Fr = 0.707 and Re = 10000.

The wavy flow is studied in a frame of reference
attached to the body (Fig. 1). The computational
domain extends in the horizontal direction from x =
−14 to x = 14 with the numerical beach model (6)
used in x ∈ (−14,−8) and in x ∈ (8, 14). In the vertical
direction the domain extends from the bottom at y =
−1 up to y = 0.4. The extension of the matching region
depends on the type of approach used to couple the two
solutions.

Matching region

Body region

Free surface region

Figure 1: Sketch of the zonal approach.

With regard to the solution of the body region,
Neumann boundary condition is applied on the body
contour and at the inflow and outflow boundaries. Re-
gardless of the type of coupling adopted, the solution
of the body region provides the velocity field to be used
as boundary condition on the bottom boundary of the
free surface domain.
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4.1 Dirichlet type

In this case the bottom boundary of the free surface
region coincides with the upper boundary of the body
region and panels coincide with the bottom face of the
cells of the Navier-Stokes domain.

The Navier-Stokes solver provides the pressure and
velocity distributions along the matching surface. Those
are used within the unsteady Bernoulli’s equation to
update the distribution of velocity potential used as a
Dirichlet boundary condition for the boundary element
solution. The solution of the boundary integral prob-
lem provides the distribution of the velocity component
normal to the matching surface, while the tangential
component can be directly computed by the tangential
derivative of the velocity potential along the matching
surface.

4.2 Neumann type

For this type of coupling, an overlapping of the two
domains is needed. In this case the panel distribution
on the upper boundary of the body domain coincides
with the bottom faces of the cell row j = jo of the
Navier-Stokes domain.

The solution of the Navier-Stokes equation provides
the velocity distribution on the upper boundary of the
body domain. This is used as a Neumann boundary
condition for the boundary element solution. The lat-
ter gives back the distribution of the velocity potential
all along the boundary, allowing the evaluation of the
velocity field at any point inside the domain and in
particular on the bottom boundary of the free surface
region, where they are used as boundary condition for
the Navier-Stokes solver at the next step.

5 Numerical results

To validate the domain decomposition and to com-
pare the effectiveness of the two approaches, compar-
isons with the solution obtained by using the Navier-
Stokes solver on the whole fluid domain (NS) are es-
tablished. In applying the domain decomposition ap-
proach, the grid resolution employed in the free surface
region is essentially the same of that used for the NS.
Furthermore, to have a fair comparison, when using
the Navier-Stokes solver in the whole fluid domain, a
free-slip boundary condition is applied on the bottom
of the channel.

In both the domain decomposition approaches the
bottom boundary of the free surface region is located
at y = −0.35. In the NT, the upper boundary of the
body region is fifteen cells above (jo = 15, that is y =
−0.20). A study of the dependence of the solution on
the overlapping extension is performed.

A key issue of the unsteady domain decomposition
is the control of the evolution of the boundary condi-
tion at the matching surface. To avoid that boundary
conditions change too much from one step to another,

the required time step is smaller than the maximum
time step allowed by the stability limit CFL = 1. Re-
sults presented below are carried out at ∆t = 1/600
while the stability limit would require, for the grid
adopted, ∆t = 1/50. Depencence of the solution on
the time step is analysed.

In Fig. 2, the free surface profile at t = 150, ob-
tained by the two different domain decomposition ap-
proaches and by the NS, are shown. In Fig. 3, the ve-
locity components exchanged at the interface are com-
pared with the corresponding values obtained by NS.
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Figure 2: Comparison between the DT and
NT domain decomposition and the solution
obtained by the Navier-Stokes solver through-
out the fluid domain (NS).

A very good agreement among the three solutions is ob-
servable, although the DT appears to perform slightly
better.
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Figure 3: Comparison of the u-velocity com-
ponent (top) and v-velocity component (bot-
tom) exchanged at the matching boundary.

In Fig. 4, results obtained by using two different time
steps are shown. The DT approach appears to be less
sensitive to the time step. In Fig. 5, the effect of the
width of the overlapping region in the NT approach is
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shown. No substantial differences occur, provided the
overlapping region is larger than ten cells (for ∆t =
1/600).
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Figure 4: Effect of the time step in the DT
(top) and in the NT (bottom) approaches.

As a case in which the advantages of using the do-
main decomposition are evident, the wavy flow gener-
ated by a submerged hydrofoil with an angle of attack
is studied. Indeed, the use of a Navier-Stokes solver in
the body region would require an important computa-
tional effort to correctly predict the flow about the hy-
drofoil, though one is much more interested in the free
surface dynamics. This problem can be easily avoided
by the domain decomposition approach described be-
fore, suitably modified by applying a Kutta condition
at the trailing edge of the hydrofoil.
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Figure 5: Effect of the width of the overlap-
ping region in the NT approach.

The hydrofoil is a NACA 0012, 5 deg angle of attack
and the submergence at the quarter of the chord is
y = −1.034. The Froude number is Fr = 0.567 and
the Reynolds number, based on the chord length, is
Re = 10000. In Fig. 6, the wavy flow generated by
the impulsive start of the hydrofoil is shown at t = 11
against the fully non linear boundary element solution
(BEM) and the experimental data by Duncan (1983).

Although numerical solutions have not yet reached a
steady state, a good agreement is displayed by the do-
main decomposition approach.
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Figure 6: Flow about a submerged hydrofoil:
comparison with the fully non linear bound-
ary element solution and the experimental re-
sults by Duncan (1983).
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