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1.INTRODUCTION 

Ocean structures are usually constrained by mooring or tether systems, which supply relatively 
weak restoring forces in the horizontal plane. Under the slowly varying drift forces exerted by 
ocean waves, these structures may undergo low-frequency resonant oscillations in the horizontal 
motion modes, i.e. surge, sway and yaw. The nonlinear wave loads are proportional to the square of 
the wave amplitude in magnitude and occur at a frequency σ that is the difference between each pair 
of frequencies, say ωi and ωj, in the components of ocean wave spectrum, i.e. σ =| ωi - ωj |. 
Conventional added mass and damping can be obtained by solving a linear radiation problem in 
which the body of the structures is forced to oscillate in the calm water. In the case when the 
frequency σ of the oscillation is very small, the wave-radiating damping vanishes with an order of 
O(σ7) in the horizontal motion modes while the added mass tends to the same order of the displaced 
water mass. However, with the presence of the incident waves, there exists another kind of added 
mass and damping that is caused by the nonlinear interaction between waves and slow oscillations. 
As part of the nonlinear wave loads, their magnitude is proportional to the square of the wave 
amplitude, which is different from the conventional added mass and damping, and they are called 
wave drift added mass and wave drift damping respectively. Recently, many studies have been 
made to evaluate and measure the wave drift damping which is more significant compared with the 
conventional wave-radiation damping and plays a key role in the simulation of slow drift motions, 
especially in estimating the resonant response. On the other hand, wave drift added mass is 
considered less important and relatively less attention has been paid to it. Nevertheless, it has been 
reported that the added mass increases significantly when measured in waves [1]. Therefore, to 
simulate slow drift motions accurately and to determine the resonant frequency, it is worth 
investigating the magnitude of the wave drift added mass and how much it would affect the slow 
drift motions. 
In the present work, the problem of interaction between slow horizontal oscillations of a body and 
ambient waves is considered. The approach used by Newman [2] to investigate wave drift damping 
is adopted. The feature of this method is that perturbation expansion based on two time scales is 
used to simplify nonlinear boundary conditions. The wave forces acting on the body are evaluated 
by integration of hydrodynamic pressure along the instantaneous wetted body surface. From the 
quadratic nonlinear forces in terms of the wave amplitude, the wave drift added mass is picked out 



 

 

by the component in contract phase to the acceleration of the slow oscillations. These results will be 
compared with the conventional linear added mass to examine their significance. 
 
2.PERTURBATION EXPANSION OF THE POTENTIAL 
We are going to consider the problem of a body slowly oscillating in a train of regular waves with a 
wave number k0 and incident angle β. The nonlinear interaction among slow oscillation modes is 
not considered so that each mode can be studied separately. The body is restrained from the linear 
responses to the incident waves. The frequency of the slow oscillations is assumed to be σ, which is 
much smaller than the incident wave frequency ω. The oscillatory displacement and velocity are 

assumed to be { }ti
jei σξ −Re  and { }ti

je
σσξ −Re  respectively, where the subscript j= 1, 2 and 6 

denoting surge, sway and yaw respectively. Following the approach of Newman’s [2], the total 
velocity potential can be expressed by the following perturbation expansion up to the quadratic 
order in wave amplitude A:  
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The potentials on the right-hand side of eqn. (1) depends only on the space position x. The number 
in the subscript indicates the order in wave amplitude while the letter j is related to the 
corresponding slow motion modes. Superscripts are used if necessary to denote harmonic time 
dependence in the respective frequencies. Here, potentials associated with double wave frequency 
are omitted since they will not contribute to the wave-drift added mass and damping. Substituting 
the above expansion into the boundary conditions satisfied by the total velocity potential and 
resorting terms with the same order, the boundary value problem governing each order of potentials 
can be obtained. Detail deduction is referred to Newman’s work [2]. 
 
3.CALCULATION OF THE WAVE-DRIFT ADDED MASS 
The wave forces are evaluated by the integration of the hydrodynamic pressure along the 
instantaneous wetted body surface and expanded in the same way as the velocity potential, i.e. 
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Here, the subscript i=1, 2, and 6 denoting the force component in surge, sway and yaw direction 
respectively. In eqn. (2) F0ij is the linear force in i-th direction per unit motion of ξj and is related to 
the linear added mass A0ij and wave-radiating damping B0ij as follows: 
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where S0 is the mean wetted body surface. In the limiting case that σ tends to zero, the radiation 
potential φ0j of the slow oscillation tends to satisfy a rigid wall condition on the free surface. It is 

further normalized as jj σϕφ =0  where jϕ  is a real function. Hence, as σ tends to zero, the linear 



 

 

wave- radiating damping B0ij vanishes while the added mass tends to  
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On the other hand, ( )0
2ijF  is a force component in quadratic order of wave amplitude, which can also 

be separated into two parts that is in phase with the acceleration and the velocity of the slow 
oscillation respectively, i.e. 
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The formula to evaluate the wave-drift added mass is given by 
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where 0C is the mean water line of the body and jD  is a derivative operator which is defined as 

xD ∂∂=1 , yD ∂∂=2 and θ∂∂=∂∂−∂∂= xyyxD6 . The asterisk * in the superscript denotes 
the complex conjugate. The letter z in the subscript means the derivative with respect to it. 

When σ tends to zero, we define ( ) ( )
jjj P=− −+

11 φφ  and ( ) ( )
jjj Qσφφ =− −+

11  where jP  is related to the 

linear wave potential φ1 as ( ) jjj iDP κφ −−= 1  with ,cos01 βκ k= βκ sin01 k= and βκ ∂∂= i6 . 

Then, in this limiting case the wave drift added mass A2ij can be evaluated simply by an integral 
along the mean water line of the body: 
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4.EXAMPLES AND DISCUSSION 
A circular cylinder with radius a is taken as an example to calculate the wave drift added mass when 
the incident wave angle is 0º. Shown in Fig. 1 are results of the wave-drift added mass A211 
normalized by ρπaζ2 where ζ is the wave amplitude. It can be observed that the wave-drift added 
mass generally is the same order as the wave drift damping in magnitude. In order to compare with 
the linear added mass, the possible maximum wave amplitude before breaking, i.e. ζ=0.14π/k0 , is 
used to renormalize the wave-drift added mass and the ratio of the wave-drift added mass A211 to the 
linear added mass A011 is plotted in Fig. 2. It can be seen that the contribution from the wave-drift 
added mass is not negligible if the wave amplitude is comparable to the dimension of the body. 
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Fig.1a Wave-drift added mass A211 for a 
uniform cylinder in different water depth h. 
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Fig.1b Wave-drift added mass A211 for a 
truncated cylinder with different draught d 
in a water depth h=4a.
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Fig.2a Wave-drift added mass A211 compared 
with linear added mass A011 for a uniform 
cylinder in different water depth h. 
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Fig.2b Wave-drift added mass A211 
compared with linear added mass A011 for a 
truncated cylinder with different draught d 
in a water depth h=4a. 
 
 
 
 
 


