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Long Time Evolution of Unstable Bichromatic  Waves

J.H. Westhuis*f E. van Groesen*, R. Huijsmanst

1 Introduction

The instability of wave trains has been a topic of re-
search since [l] showed that the traveling wave solu-
tion of the non-linear water wave problem is unstable
to modulational perturbations of its envelope. Many
authors have studied these instabilities and confirmed
the B-F instabilit,y  growth-rates. When [7]  showed that
the Benjamin-Feir instability is also produced by the
Nonlinear-SchrGdinger  (NLS) equation of weakly non-
linear wave theory, the long term behavior of the initial
instability has been sought in terms of desintegration of
the modulated wavetrain into solit,ary  wave envelopes
P, 31.
For applications in hydrodynamic laboratories, the
evolution and the resulting maximal wave heights are
of practical interest. An experimental study by [4]
in which the spatial evolution of a bichromatic wave
group envelope is reported, motivated the research of
this presentation. We numerically investigate with a
nonlinear potential time domain method the long t,ime
evolution and spatial distribution of unstable bichro-
matic  wavegroups and observe (in most cases) a recur-
rence phenomena. For moderate cases a ‘simple’ pe-
riodicty in the spatial evolution of the spectrum may
be observed. However, with increasing initial ampli-
tudes, more complicated (periodic) structures may be
observed. Our current work aims at classifying these
phenomena and find experimentally relations between
characteristic quantities. In the final section we derive
a stability criterion and a partial theoretical explana-
tion of the phenomena.

t,hese  equations involves the solution of Laplace’s equa-
tion on the interior of the fluid. This solution is ob-
tained using a linear Finite Element Method on a grid
that is refined near the free surface. An artificial beach
is constructed using a combination of pressure damp-
ing, grid stretching and Sommerfeld conditions tuned
at the critical wavespeed &$;  the damping properties
are remarkably good [6].
At the generating side of the domain, we used three dif-
ferent kind of generators to exclude that the observed
effects are related to the specific way of wave genera-
tion. i) Moving flap: a moving hinged flap I ii) Lin-
earized flap: the fluxes of the real flap are generated
on a static vertical wall iii) Linear solution; the flux
generated at the fixed vertical wall is derived from the
expression for linear water waves. Although the signals
differ from each other (which is to be expected), this
difference consists of relatively small phase differences,
the characteristic deformation of the wavegroup enve-
lope is still observed (Fig. 1) and power spectra are
almost identical. For further calculations we used the
linearized flap, because it is easier to perform stable
computations than with the moving geometry and it is
more similar to a physical wave tank than the imposed
linear solution. From these observations regarding the
beach and wave generation and from qualitative com-
parisson of our numerical results with the experiments
in [4]:  we conclude that the observed phenomena are
only due to the nonlinearity of the equations and are
not a consequence of numerical wave generation or ab-
sorbtion.

3 Phenomenon and simulations
2 Numerical method

The fluid is considered two dimensional, incompress-
ible, inviscid  and irrotational, which allows the veloc-
ity field to be defined by a potential function. The dy-
namic and kinematic boundary conditions on the free
surface are integrated in time using a 5 step, 4th order
Runge-Kutta  scheme. Evaluating the right hand side of
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We have conducted a series of numerical experiments
for bichromatic waves with the two frequencies cen-
tered around 2s on a water depth of 5 meter. In all
cases, both amplitudes are equal and denoted with
q. The experimental model test results of [4]  (7’1 =
1.9s, T2 = 2.1s, q = 0.0&n),  and recent experiments at
MARIN  by Huijsmans & Westhuis 1999 Y show strong
asymmetric wave envelope deformation. The numeri-
cal simulations reproduce these findings; moreover: the
comput,at,ions  have been extended to simulate a 1200 m
wavetank  (h=5m)  with  uncovers dynamics which is not

1



water elevation at  x=120 m
I

0.3

0.2

zz 0.1
s

'Is
h, cl
a

-0.1

-0.2

I I
1 0 5 1 1 0 1 1 5 120 125

t  Es1

Figure 1: Comparison of the wave elevation of the unsta-
ble bichromatic  wave generated by a moving hinged flap
(dashed line), a hinged flap with linearized geometry (full
line) and with the exact linear flux solution of the bichro-
matic  wave prescribed (dotted line).

recognizable in physical laboratories. First we will de-
scribe the results for the model test mentioned above;
then the evolution of the spectrum for different, cases
will be compared.
For the model test case, according to linear theory, the
modulated wave group would be described by n(zr,  t) =
2qcos(Alcz-A&)  cos(iz-at)  where w = n, ,& M  1 are
the averaged frequency and wave number respectively,
and Aw M  n/20 i Ale  M  0.1 are half the differences. In
the figures below: time signals at different positions of
the tank show the unstable evolution characterised  by
large deformations of the envelope: the characteristic
temporal beat pattern close to the wave maker is grad-
ually deformed into more confined, much higher waves
connected by smaller amplitude waves. For distances
of the laboratory, this is shown in Fig. 2; for larger
distances, Fig. 3 shows that the smaller waves form
a second wave group that splits from the original one
and merges with the successive larger group. On even
larger distances, Fig. 4, it is seen that the splitting and
merger process is a recurrent phenomenon. The tem-
poral behaviour is periodic with period determined by
the driving modulation period n/Aw  M  20; the spatial
recurrence takes place on an interval of approx. 400 m,
much larger than the spatial periodicity of the linear
solution which is r/Ak  M  10 7r.

Now we consider the change in the spectrum of the
bi-chromatic waves; and compare the above model test
with other cases that have different values of the fre-
quency difference or amplitude. In situations where
the initial frequencies are well seperated (2’~  :Ts) =
(l&2.2)  no spatial variations have been observed. For
smaller frequency differences, such as in figure 5 for
(7’1~7’~)  = (1.9,2.1),  the spectrum changes with in-
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Figure 2: Time signals of a single wave group at different
positions, 10, 40, 80, 120, 160, 200 m, from the wave maker,
showing the asymmetrisation and increase of amplitude.

creasing distance from t,he  wavemaker, with periodic
growth and decay of several sideband modes. The first
side band modes (2wr - ~2, 2wz  - wi) are observed for
larger amplitudes; for (I = 0.08, even significant ener-
gies at the frequencies 3wl  - 2ws  and 4wl  - 3~2 are
clearly visible. (Higher initial amplitudes led to break-
ing within 900 seconds.) For smaller frequency differ-
ences, the instability shows itself already for smaller
amplitudes.
Examination of the results has shown that there is a
correlation between the spatial periods (and growth
rates) of the sideband modes and the period of the ini-
tial waves. It is remarkable to notice that also the side
band frequencies that lay well out of the B-F instability
intervals (situations with q = 0.04, q = 0.06) show sig-
nificant, growth rates, which indicates that a different
kind of analysis is needed when examining the insta-
bility of these wavegroups; this will be done next.

4 Theoretical description

It is possible to construct a simplified model to de-
scribe and partly explain the observed phenomena by
analysing an NLS-type of envelope equation. To that
aim, we write in lowest order ~(2,  t) = o. exp i(K(&)z -
it + 4) + C.C.  with real amplitue a: and phase K(G)x -
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Figure 3: Time signals at larger distances (200 . 550 m)
from the wave maker, showing the splitting and merger of
a small wave group.

Figure 4: Density plot in a moving frame of reference,
showing the splitting and merger of a small wave group.
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Figure 5: Spatial evolution of the spectrum of the bichro-
matic  wave for different amplitudes. The periods of the
bichromatic  modes are (Tr,Tz) = (1.9,2.1)  and the depth
of the tank is 5 meters. Clearly the periodic structure of the
nonlinear spatial evolution is visible for smaller amplitudes.
However, for larger amplitudes this simple periodicity does
no longer hold.
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at + 4, where K(U)  is the wave number corresponding
to the avaraged frequency according to linear disper-
sion. Then the NLS equation contains certain param-
eters ,8  (from group velocity dispersion) and y (from
nonlinear generation of second harmonic). The param-
eter ,8  is positive, but, the sign of y depends on the dis-
persive properties [5].  For applications in laboratories,
with relatively short waves: a KdV-type of dispersion
is not applicable and would lead to a negative value
for y (and diverging NLS). Instead, using the disper-
sion relation for small waves of any wave length: i.e.
in normalised variables w = dm, the coefficient
y is positive: self-focussing NLS, and the essential fea-
tures are recovered. To illustrate this, it is simplest
to work with the phase-amplitude equations. These
can be written in various forms; in the following de-
scription, for direct interpretation, we use the physical
frequency w and wavenumber lc, and the ‘energy’, or
squared envelope, E = a2, Then, using as variables
7 = t - z/Vo,  [ = 2: with Vi the central group velocity,
energy and wave conservation, the phase equation, are
given by:  respectively,

d,E  + &[2/3(w  - a)E]  = 0

dEw+&[k-$]=O,  K(w)-k=yE+&

The last equation is the non-linear dispersion relation
(NDR), where the linear dispersion relation is modi-
fied with terms that account for a nonlinear correction,
and a dispersive driven profile contribution (Yuen &
Walker, Fornberg &Whitham).
For the signal problem for the bi-chromatic wave: at
[ = 0, the frequency is fixed w = a, and the amplitude
is the modulation n = qcos(Aw~).  Then, the NDR
produces the wave number as Ic = i - yq2  cos”(Aw7),
after which the change in frequency is found for in-
creasing I: and: consecutively, the change in energy.
The result, is that, initially, in each modulation period,
the frequency is skew-symmetric, and the envelope in-
creases in the middle and decreases at the sides. This
indicates that near < = 0: the cosine-profile changes
into a sharper peaked pulse profile. With increasing
distance, the profile further deforms.
A phenomenological investigation of possible instabil-
ity can be based on the fact that the model with the
correct dispersion is the self-focussing NLS equation
and initial data on the whole real line will develop into
solitons and residual radiation. For a soliton to exist
it is necessary that the quantity K(w) - k is positive.
The restriction to periodic (temporal) intervals then
restricts the possibility for such a soliton to develop in
the following way. The energy per period generated at
the wave maker is proportional to q’/Aw.  Any NLS-
solit,on  has width inversely proportional to its ampli-
tude, which itself is proportional to its energy. By the

temporal periodicity of the observed phenomena, this
means that, the soliton amplitude and energy should at
least be proportional to Aw. Comparing the generated
energy and that of a soliton implies that the quotient
q/Aw should exceed a critical value to explain t,he  ap-
pearance of at least one large amplitude soliton within
each temporal period, providing a stability criterion
that resembles the condition for Benjamin-Feir modu-
lational instability of a uniform wave train.

5 Conclusions

Detailed and accurate numerical simulations of wave
forms, their envelopes and spectra of unstable wave-
groups were presented on very long spatial and time
intervals. It was found that for an initially bi-chromatic
wave:  instability arises when the wave height or the in-
verse frequency difference is sufficiently large. The in-
stabilit,y was shown to be noticable  in transfer of energy
to sideband modes in a quasi periodic manner; taking
the spatial structure per mode t,o  be periodic, an ex-
perimental dependence between the spatial wavenum-
ber and the wavenumber of the principal mode was
found. Theoretically, an instability condition was de-
rived for this case; although it resembles somewhat the
BF-instability condition for uniform wave trains, no
direct relation has been found between the observed
growth rates of side band modes and the standard BF-
predictions. A possible explanation may be that the
growth rates in the bi-chromatic instability are deter-
mined by the enforced periodicity of the envelope and
are a manifestation of the development of the confined
soliton-type shapes within that period.
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