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1 Introduction

The conventional theory of the metacentre is presented in many textbooks, e.g. in [1] and [2]. I

have always had di�culties with this piece of theory, which I shall try to explain in the present

note. We consider a body oating in equilibrium on the surface of a uid, the immersed volume

being V . Let the body be subjected to an external couple, so that it takes up an inclined position ;

when the uid has come to rest it is assumed that the immersed volume is again equal to V . If the

external couple is now removed, does the oating body tend to return to its equilibrium position ?

This is the problem which is treated in textbooks in the following manner.

We take axes OXY Z �xed in the body. It is almost obvious that the possible constrained

positions with immersed volume V are de�ned by two independent angular parameters. The

possible positions of the free surface in the system OXY Z are the Planes of Flotation, all of

which touch the Surface of Flotation. In any such inclined position the force system consists of

the constraining couple, together with the force of otation and the (vertical) weight of the body

through its centre of gravity. The force of otation is the resultant of the hydrostatic pressures

acting on the immersed part of the body, it is a vertical upward force and is equal and opposite

to the weight. As is well known, its line of action (Line of Buoyancy) goes through the Centre of

Buoyancy which is the centroid of the immersed part of the body for that inclination. When the

inclination is varied, it is seen (since there are two independent parameters) that the centres of

buoyancy form a surface, the Surface of Buoyancy, in the coordinate system OXY Z �xed in the

body.

The lines of buoyancy form a doubly in�nite system of straight lines (i.e a linear congruence)

in the system of axes �xed in the body. It can also be shown that the lines of buoyancy are the

normals to the surface of buoyancy, see [1], Art.49. For any given inclination we can readily �nd the

relevant line of buoyancy, because it is vertical. So far no mention has been made of the metacentre.

The conventional theory now proceeds as follows: it is assumed that the body is rotated about

its longitudinal axis, and that we are interested only in certain small angles of inclination. The

corresponding lines of buoyancy then form a one-parameter set, with a cusped envelope. To a close

approximation it may now be assumed that these lines of buoyancy pass through the cusp which is

given the name of metacentre. Then the relative positions of the cusp and of the centre of gravity

determine the direction of the constraining couple, and thus they determine the stability of the

body in the inclined positions which we have been considering.

There are some di�culties which will have occurred to many readers of this piece of theory .

The �rst di�culty is concerned with the lines of buoyancy, the remaining di�culties are concerned

with the uid motion.

1. The lines in a one-parameter or two-parameter set of lines do not intersect in general, and

therefore do not form an envelope.

2. The calculation refers to the body at rest in its constrained position, whereas stability refers

to a body in motion.

3. When the constraint is removed, the body begins to move, and so does the uid. The inertia

of the uid should enter into the calculation.

4. The stability is not determined at the initial instant, it is the end result of a motion in time.

This motion starts when the constraint is removed, and ends when the body and uid �nally

come to rest. An additional stability argument is considered in the Discussion below.



5. To follow the motion which has just been described we should have to solve a system of

non-linear equations in time. These equations describe the motion of both the body and the

uid.

6. Even if the original inclination is small, the resulting linearized wave motion is not readily

treated. (See [3] for a related but simpler calculation which involves the coe�cients of virtual

mass and moment of inertia and the coe�cients of damping for all frequencies.)

These di�culties suggest that we may perhaps hope to �nd an initial motion. When the

constraining couple is removed, how does the body begin to move ?

2 A modi�ed problem: To �nd the initial acceleration

As before, we consider a body oating in equilibrium on the surface of a uid, the immersed volume

being V . Let the body be subjected to an external couple, so that it takes up an inclined position;

when the uid has again come to rest it is assumed that the immersed volume is again equal to

V . If the external couple is now removed, what is the initial linear and angular acceleration of the

body ?

Lines of buoyancy, centres of buoyancy, and the surface of buoyancy are de�ned as above.

When the constraining couple is removed the body and the surrounding uid will immediately be

accelerated. We need to know the initial reaction of the uid on the body. This is determined by

solving a boundary-value problem. We take coordinate axes Oxyz �xed in space, such that initially

the free surface is at z = 0. We denote by �(x; y; z) the initial acceleration potential, satisfying

Laplace's equation. It can be shown that the boundary condition on the initial free surface z = 0

is then �(x; y; 0) = 0: Thus �(x; y; z) can be continued by reection into the upper half-space by

the relation

�(x; y; z) = ��(x; y;�z)

and its region of de�nition is the whole of space, bounded internally by the immersed boundary-

surface of the body , and by its reection in the plane z = 0. Together these two surfaces will form

a closed body, with a discontinuity of slope along the water-line. To an angular acceleration of the

immersed surface about an axis there will correspond an angular acceleration of the reected surface

about the reected axis, and to a linear acceleration of the immersed body there will correspond a

linear acceleration of the reected body. Thus for any prescribed linear and angular acceleration

of the immersed body the potential � is well de�ned in principle outside the closed (immersed plus

reected) body, and the actual linear and angular acceleration can then be found by applying the

equations of motion. The boundary conditions on this closed body do not represent a rigid-body

motion and therefore the uid-force system cannot be expressed by the familiar virtual-mass and

virtual-moment-of-inertia tensors. However, the acceleration potential can still be found, at least

in principle. The calculation involves the determination, from the body contours, of the lines of

buoyancy and of the surface of buoyancy, evidently a demanding task which is simpli�ed because

the lines of buoyancy are the normals to the surface of buoyancy.

3 Discussion and comments

The argument in the two earlier sections has not yet involved any envelope or cusp, and therefore

no metacentre. These become involved when we include the hydrostatic forces in the calculation

of the initial acceleration. As has been noted, the lines of buoyancy, forming a normal congruence,

do not in general intersect each other and therefore cannot form an envelope. We now consider

the properties of such a congruence, which are well known. Let us take a point P on the surface

of buoyancy. Each plane containing the normal at P intersects the surface of buoyancy in a plane

curve, with a well-de�ned curvature at P which depends on the orientation of the plane. It is

shown in textbooks of di�erential geometry that for one orientation the curvature has a maximum



and for another orientation the curvature has a minimum. The corresponding directions on the

surface of buoyancy are known as the principal directions of curvature and are orthogonal. To each

principal direction there corresponds a centre of curvature, (the normals to the surface pass close

to the centre of curvature but do not pass through the centre of curvature) and these centres of

curvature lie on a surface of two sheets. Every line of buoyancy is tangent to this surface at each

of the two centres of curvature. The lines do not form an envelope, and there are no cusps. It

seems possible, however, that for a long ship and for inclinations about the longitudinal axis the

lower centre of curvature can be taken as an approximate metacentre, and that the moment of the

uid pressure can be described by a virtual-moment-of-inertia tensor. For a long ship and for an

inclination about the longitudinal axis of the ship we see that the lower centre of curvature in the

mid-section correponds to the conventional metacentre. In obtaining these considerations use has

been made of well-known results in hydrostatics, hydrodynamics and the di�erential geometry of

surfaces, and the assumptions of the modi�ed conventional theory have been clari�ed, but not its

relevance to the original problem of stability.

I found a history of the metacentre in a classical work of scholarship, the Encyclop�adie der

mathematischen Wissenschaften, published between 1898 and 1920. The most relevant article is

by P. St�ackel, [4]. The theory is essentially due to Bouguer [6] who introduced the metacentre, to

Euler [5], and to Dupin [7] who introduced lines of buoyancy and surfaces of buoyancy. I believe

that Dupin in particular understood very well all the di�culties which I have raised. ( I have not

myself consulted these works.) In the middle of the nineteenth century it was pointed out that

the static couple cannot by itself tell us anything about stability, since the uid motion has been

ignored. (We may perhaps feel that the static couple and the uid couple must be in the same

direction, more or less, but this has not been proved.) It is not suggested in St�ackel's article that

the initial acceleration can be found, or that the linearized motion can be found.

There is an additional stability argument based on energy, which may occur to some readers.

We consider the system at the instant when the constraining couple has just been removed. The

kinetic energy at this instant vanishes. A wave motion then takes place, and energy is transferred

to in�nity. After a long time the system is again at rest. Evidently the potential energy of the

oating body in the �nal state must be less than the potential energy in the initial state. Thus for

stability the vertical distance between the centre of gravity and the plane of otation must be less

in the inclined position than in the upright position. The surface of buoyancy, and therefore the

metacentre, is not involved in this argument.
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