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1 Introduction

Regarding the interaction of waves and a very large 
oating body of zero draft, whose con�guration

represents a design concept of 
oating airports, a question was raised at 14th IWWWFB on how to

evaluate the side force acting on the zero draft body. This issue will be crucial if we are concerned

with computation of the steady drift force and slow oscillating drift force in multi-frequecy waves;

the latter in particular is not computed from the far �eld behavior of the waves scatterd and

radiated by the body but to be evaluated with integrating the pressure on the body's side surface.

We will need more careful analysis of the 
ow close to the edges of the thin body to study this

problem. In this report we present a result of an attempt to this direction.

2 Solution of the problem

We assume a 
oating thin plate is very long and the 
ow when it is in beam seas is taken to be two

dimensional with generator parallel to the z axis. The x and z axes are on the mean free surface

and the y axis is toward vertically upward. We take the width of the plate is 2 and the draft d, ie

the thin plate occupies the region of the mean free surface of �1 � x � 1 and �1 < z < +1.

We suppose the regular waves being incident at beam on the plate whose velocity potential is

�0(x; y)e
i!t = e

ikx+ky+i!t (1)

Assumptions for our analysis is that the wave length is very small compared with the width of the

plate and the draft is much smaller than the wave length ie.

1 >> k
�1

>> d (2)

This assumption will be reasonable when we consider the dimensions of a prototype model of


oating airport constructed recently in Japan.

Here our analysis is not with a method proposed, for example, by Ohkusu (1998) but it is rather

along a traditional line of decomposing the 
ow into radiation and scattering ones and expanding

the vibration of the plate into a series. We introduce an expression for the vertical displacement

�(x)ei!t of the plate due to the bending vibration

�e
i!t =

X
n

AnUn(x)e
i!t (�1 < x < 1) (3)

Un(x) is Chevyshev polynominals of the second kind. An are to be determined by solving the

equation of the plaete vibration with the edge conditions. Reason for this expression is not that

Chevyshevs are mode functions but that they lead to the explicit expression of the hydrodynamic

pressure on the plate.

The velocity potential �e�!t of the 
ow is decomposed into the radiation potential �R by the

vibration of � and the scattering potential �D by �0

� = �R + �D (4)

Here �D contains the e�ect of �0. Hereafter we suppress e
i!t unless it is needed.

The linear free surface condition for � is
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�k�+ �y = 0 (y = 0; x > 1 or x < �1) (5)

Subscript y denotes the di�erentiation into its direction. Hereafter this notation will be used.

The free surface condition is further simpli�ed in the outer region of jx � 1j = O(1); y = O(1)

with the assumption of the fore-part of the assumption (2)

� = 0 (y = 0; x > 1 or x < �1) (6)

A solution of �R in the outer domain is straightforward. In the outer region the draft is too

small to be felt and the body boundary condition is imposed on y = 0

�Ry = i!

X
n

AnUn(x) (y = 0; �1 < x < 1) (7)

The problem is a fmiliar one in the linear wing theory ( we impose the condition �Rx;y ! 0 at

in�nity ). Integral equation for �Rx is given by

i!

X
n

AnUn(x) =
1

�

I 1

1

�Rx(�; 0)

� � x
d� (8)

Here a circle on the integral symbol denotes Cauchy's principal value.

Solution is given by inverse Hilbert transform ( Tricomi 1957 ). �Rx and ��Ry except the

eigensolution is given by th real part and the imaginary part respectively of

�
1

�

i!
p
1� z2

Z 1

�1

p
1� �2

� � z

X
n

AnUn(�)d� (9)

In this equation z denotes a complex coordinate z = x + iy and the principal value is taken if

z = x; jxj < 1. We notice that we should add a progressing wave train solution in very thin layer

close to the free surface (jx� 1j = 1; ky = O(1))

After some algebra and discarding the eigensolution with the condition of continuity of �R(x; y)

at x = �1; y = 0, we have �R on the plate surface

�R(x; 0) = �i
!

�

X
n

An

n+ 1
Un(x)

p
1� x2 (jxj < 1) (10)

Reason for choice of Chevyshev polynomnals is clear. Obviously the pressure on the plate is in-phase

of the motion and no damping force acts.

We consider the local 
ow in the region of wave length size kjx� 1j = O(1); ky = O(1) around

both edges of the plate. We notice this region is yet large enough, the latter part of the assumption

(2) says, to let us assume the plate draft is zero. �R in this region close to x = 1 for example has

to satisfy the original free surface condion (5) and the body condition

�Ry = O(k�1) (y = 0; �1 < x < 1) (11)

since in this region other edge x = �1 is very far away and its existence is not felt. We may take

the right hand side is zero in the lowest order solution.

The problem is a dock problem of semi-in�nite length which has been well studied ( for example

Friedrichs and Lewy (1948), Holford (1964) ). In our problem the boundary conditions are all

homogeneous; the forcing comes from the matching condition with the solution (10) at x � �1.
A local solution �R, for example, in the region at kz � 1 will be

�R = �
p
2i!

X
n

An

�
Re[

p
1� z] + k

�
1

2F (k(x� 1); ky)

�
(12)
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where the function F is derived from the result of Holford ( 1964 ). When we are concerened with

the pressure beneath the plate we may de�ne as

F (kx; ky) =
1

2�

Z
1

0
ds

Z
1

0
d�

�(s)�(�) cos(�ky)e��kjxj

�(� � i)(s� i)(� + s)
(13)

The details of the function �(x) is not reproduced here for the sake of brevity but it is of O(x) at

x =1 and of O(
p
x) at x = 0 ( see Holford (1964) ).

A local solution of �R at kz � �1 is obtained in similar manner. We add two local solutions at

x � �1 and the solution (10) to obtain a composite expression of �R valid everywhere on the plate

�R(x; 0) =
�i!
�

X
n

AnUn(x)

n+ 1

p
1� x2�

r
2

k
i!

X
n

An

�
F (k(x�1); 0)�(�1)n+1

F (k(x+1); 0)

�
(14)

We should notice that F to produce the out-of-phase part of the pressure is localized to very small

region close to the plate edges. It means the damping force due to the vibration acts only at the

edges of the plate.

�D is obtained almost the same way as �R. In the outer region at x; y = O(1) the solution

is an eigensolution satisfying the homogeneous conditions both on the body and the free surfaces:

�Dy = 0 on the plate ( y = 0 ) and �D = 0 on the free surface. The coe�cients are to be determined

by the matching with the local solution valid k(z� 1) = O(1). The local solution is a solution that

satis�es the free surface condition (5) and the condition ensuring the incident and the out-going

waves at in�nity. It is a dock problem and the solution is found in Holford (1964).

A composite expression of �D valid everywhere on the plate is

�D(x; 0) =

r
1

k�

�s
1 + x

1� x
�

s
2

1� x

�
+

p
2

�

Z
1

0

�(�)e�k(x�1)

�(1 + �2)
d� (�1 < x < 1) (15)

We see from this expression that the lowest order part of the wave force is limited in the small area

very close to the windward edge.

Equation of the plate bending vibration is obtained immediately with the above expressions for

hydrodynamic force:

X
n

An

�
U

(4)
n (x)� !

2

�
m� �

p
x2 � 1

n+ 1
�
�g

!2

�
Un(x)� i

p
2g

�
F� + (�1)nF+

��
= �D(x; 0) (16)

where m denotes mass per unit area of the plate and F� = F (k(x� 1); 0) in (14).

3 Steady force

We are able to evaluate steady drift force on the plate by the far�eld computation without relying

on the pressure integration. Yet the pressure integration will be useful for estimating the local

distribution of it. Furthermore the idea proposed here will be extended to the computation of the

slowly varying force in random seas whose evaluation needs the pressure integration.

We investigate the asymptotic behavior of the local solution �D as k(z � 1) approches zero to

study the force acting on the side surface of the plate, which extends from y = 0 to y = �d. For
the sake of brief description here we focus on �D, though alsmost similar method is applied to �R.

As k(z � 1) goes to zero, the second term of �D given by (15) will become

�D =
p
2�

p
2

�
Re

�
k(z � 1) log k(z � 1)

�
+O(k(z � 1)) (17)
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Obviously the �rst term corresponds to the wave elevation at the edge of the plate x = 1; y = 0. In

our case, very large body and small wave length, the incident waves are re
ected completely. The

second term is caused by the regularity condition imposed on the edge 
ow. When a in�nite wave

elevation is admitted there, other solution will appear (Stoker (1957)).

It is an accepted method in engineering to account only for the steady pressure acting above the

free surface due to the wave elevation with very shallow draft body. Here we consider the second

term to con�rm its legitimacy.

Rescale the coordinate by d as Z = k(z � 1)=d and rewrite (16) with the �rst two terms retained,

we have

�D =
p
2�

p
2

�
X � d log d+O(d) (18)

� is a solution of the 
ow around a semi-in�nite dock of �nite draft 1 to satisfy @�=@Y = 0

on the mean free surface. � must have an asymptotic behavior of (18) as Z goes to in�nity. The

second term of (18) represents the uniform 
ow along the X axis; it is a simple problem that is

solved by conformal mapping method. � will be in the form

� =
p
2�

p
2

�
d log d(X +	(X;Y )) (19)

where

	(X;Y ) = �
1

�
Re(cosh �); X � iY =

1

�
(� + sinh �)

We compute the steady force fS acting on the area projected into the x axis with this solution.

fS = �
�g

2
+
�

2
(d log d)2

Z 0

�1

�
@	(0; Y )

@Y

�2

dY (20)

In this computation we need not consider the force at x = �1 becuse �D is zero there ( comple

re
ection ). Obviously the second term representing the force acting on the mean wetted side

surface is of higher order than as much as d.

The steady force fB acting on the bottom of the plate which is vibrating is given by

fB =
�!

4

X
n

An

Z 1

�1
U
0

n(x)dx

�r
1

k�

�s
1 + x

1� x
�

s
2

1� x

�
+

p
2

�

Z
1

0

�(�)e�k(x�1)

�(1 + �2)
d�

�
(21)

4 Remarks

Numerical results are presented at the Workshop.

A future problem is the case of kd = O(1). Analytical solution of the semi-in�nite dock with

�nite draft is not available as far as the present author knows. Maybe numerical technique must

be introduced in this case.
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