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Consider the linearized free-surface potential flow generated by a point source of unit strength
advancing with constant speed U along a straight path submerged a depth § = D/L below the
mean free-surface plane z = 0. Here L is an arbitrary reference length. This reference length
may be chosen as L = D or L = U?*/g, which respectively yield 6 = 1 or 6 = g D/U?. The
flow is observed from a moving system of coordinates attached to the source and thus appears
steady. The z axis is vertical and points upward. The z axis is chosen parallel to the path of
the moving source and points in the direction of motion of the source. The origin of the system
of coordinates is chosen above the source, which is then located at the point (0,0, —J) .

BASIC FLOW REPRESENTATION
The disturbance velocity field % due to the unit source can be expressed as
d=a"+a°+at (1)

where the simple-singularity component @ corresponds to a simple Rankine singularity and the
wave component %" and the local component @~ account for free-surface effects.

The wave component " is given by
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The simple-singularity component %7 is given by
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The local component is the object of this note and is considered hereafter. Let
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In the farfield r//F? — oo, the local component %% can be evaluated using an asymptotic
approximation which can be obtained from Bessho (1964) and Ponizy (1994) :
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In the nearfield, the local component i ” is given in Noblesse (1978) and Ponizy (1994) as
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The components #{*Y and @4 are singular at 7 = 0 and are given by
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where Yy = y/(r'+ |z|) and Zg = (6 — 2)/(r'+ |z| . The component 7V is given by
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where v = 0.577 is Euler’s constant. The component @i is O(1) as ' — 0. Finally, the
component @1 is O(r'/F?) as ' —0 and is given by
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Here, E1(Z) is the exponential integral. F(Z) and consequently /" vanish as r//F?— 0.

Let the coordinates (z,y,z — d) be defined in terms of the polar coordinates (', 6, ¢) :
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The foregoing farfield and nearfield representations show that the local flow F* @ is a function
of the 3 variables (r'/F?, 0,¢) and that 47 ()2 4% is O(1) for 0 < r'/F? < .
GENERALIZED FLOW REPRESENTATION

Expressions (2) for the wave component @' show that v" and w" vanish as z — 0.
However, v" has a finite discontinuity at z=0. Specifically, we have
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The nearfield representation (5) of the local component @ % shows that v and w” are continuous
at z = 0. However, u” has a finite discontinuity at 2 =0. Specifically, we have
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Continuity of the velocity u" + u” at z = 0 yields 4 J = [uf™ + vk + ufV],—¢. The wave
component @" may be expressed in the form @' = @} + @}V where the component )" is
defined by (2) with signz in (2a) replaced by a function

o VT oox ox x
6 = @(ﬁ) of the type erf(T ﬁ) tanh(ﬁ) RN (6a)
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The component 4 ]YV is given by

ulV ! - cos ¢” cos pY (z—06) o?
UEV = (O — signz) — / dt o § —t sinp” sin ¥ » exp ———
wW m " Jo « sin ¥ Yy F

A o cos

The component }" represents a local flow, which can be grouped with @ . Thus, the flow
representation (1) becomes @ = @)Y + @5+ (@*+ @"). In the limit z — 0, we have v}’ — 0,
wy — 0, and 7 F*u)V ~ (© —signz) J ~ (O —signz ) (i + ud™ + ufN)/4. Thus, signz
in (2a) and (5a) may be replaced by a function © of the type (6) if o is sufficiently large. This
substitution is used hereafter.

SIMPLE ANALYTICAL APPROXIMATION TO THE LOCAL FLOW
The farfield and nearfield representations (4) and (5) yield
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A simple function @ that satisfies these two limiting conditions is Q = (r'—F?)/(r'+F?).

Thus, the local flow @” may be approximated as @~ ~ @Z4 with @~4 given by
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This approximation to the local flow @’ is asymptotically equivalent to the first (dominant)

terms in the farfield and nearfield approximations (4) and (5), and the relative error associated
with the approximation @4 is O(F?/r') in the farfield and O(r/F?) in the nearfield.

The second term in the approximation @ %4 is O(F?/r") in the nearfield, like the second term
@4V defined by (5b) in the nearfield approximation (5a). The modified approximation given by
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is asymptotically equivalent to the first term in the farfield approximation (4) and the first two
terms in the nearfield approximation (5). In fact, (7) yields
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Thus, the relative error associated with the approximation (7) is O(F?/r') in the farfield and
O(r'/F?)? in the nearfield, as follows from (6b), (5a) and (5b) .

For purposes of numerical evaluation, the approximation (7) can be expressed in the form
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Gauss integration rules can be used to integrate @4 over a panel except if r' is of the order of

the panel size. In this case, #”* can be expressed as
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where Y and Z stand for mean values of Y and Z over the panel, and i, is given by
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with p = r//F?. The first two terms on the right of (9b) are singular as v’ — 0 but can be
integrated analytically. The term i, is finite as 7' — 0 and Gauss integration can be used. Thus,

the component %4 can be integrated over a panel in a simple and accurate manner.

CONCLUSION

The analytical approximation # %4 given by (9) makes it possible to evaluate the flow due
to a singularity distribution in a simple and highly efficient manner. Practical applications to
the slender-ship source distribution defined in Noblesse (1983) show that the approximation (9)
is sufficient for many purposes. The approximation (7) also provides a useful starting point to
develop accurate approximations to the local flow @ % by expressing @ in the form
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The remainder @%% = @~ — %4 is O(1) as 7' — 0 and O(1/r")® as r' — co. This remainder
can be evaluated using table interpolation as in Ponizy (1994), or an analytical approximation
based on a composite of the farfield and nearfield approximations (8), (4) and (5) .

REFERENCES

Bessho M. (1964) On the fundamental function in the theory of wavemaking resistance of
ships, Memoirs of the Defense Academy, Japan, Vol. IV, 99-119

Noblesse F. (1978) On the fundamental function in the theory of steady motion of ships, J1
Ship Research, 22, 212-215

Noblesse F. (1983) A slender-ship theory of wave resistance, J1 Ship Research, 27, 13-33

Ponizy B., Noblesse F., Ba M., Guilbaud M. (1994) Numerical evaluation of free-surface
Green functions, J1 Ship Research, 38, 193-202



