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Consider the linearized free-surface potential ow generated by a point source of unit strength

advancing with constant speed U along a straight path submerged a depth � = D=L below the

mean free-surface plane z = 0 . Here L is an arbitrary reference length. This reference length

may be chosen as L = D or L = U2=g , which respectively yield � = 1 or � = g D=U2. The

ow is observed from a moving system of coordinates attached to the source and thus appears

steady. The z axis is vertical and points upward. The x axis is chosen parallel to the path of

the moving source and points in the direction of motion of the source. The origin of the system

of coordinates is chosen above the source, which is then located at the point (0 ; 0 ;��) .

BASIC FLOW REPRESENTATION

The disturbance velocity �eld ~u due to the unit source can be expressed as

~u = ~uW+ ~uS+ ~uL (1)

where the simple-singularity component ~uS corresponds to a simple Rankine singularity and the

wave component ~uW and the local component ~uL account for free-surface e�ects.

The wave component ~uW is given by8><
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The simple-singularity component ~uS is given by8><
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The local component is the object of this note and is considered hereafter. Let

r0 =
q
x2+ y2+ (z � �)2

In the far�eld r0=F 2 ! 1 , the local component ~uL can be evaluated using an asymptotic

approximation which can be obtained from Bessho (1964) and Ponizy (1994) :
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In the near�eld , the local component ~uL is given in Noblesse (1978) and Ponizy (1994) as
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The components ~uLN
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are singular at r0 = 0 and are given by8><
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where Y0 = y=(r0+ jxj) and Z0 = (� � z)=(r0+ jxj . The component ~uLN
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is given by8><
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where  � 0:577 is Euler's constant. The component ~uLN
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is O(1) as r0 ! 0 . Finally, the

component ~uLN
4

is O(r0=F 2) as r0!0 and is given by8><
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Here, E1(Z) is the exponential integral. F(Z) and consequently ~uLN
4

vanish as r0=F 2! 0 .

Let the coordinates (x ; y ; z � �) be de�ned in terms of the polar coordinates (r0; � ; ') :8><
>:
x = r0 cos� cos'

y = r0 cos� sin'

z � � = �r0 sin�

9>=
>; with

(
0 � � � �=2

�� < ' � �

)

The foregoing far�eld and near�eld representations show that the local ow F 4 ~uL is a function

of the 3 variables (r0=F 2; � ; ') and that 4� (r0)2 ~uL is O(1) for 0 � r0=F 2 � 1 .

GENERALIZED FLOW REPRESENTATION

Expressions (2) for the wave component ~uW show that vW and wW vanish as x ! 0 .

However, uW has a �nite discontinuity at x=0 . Speci�cally, we have
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The near�eld representation (5) of the local component ~uL shows that vL and wL are continuous

at x = 0 . However, uL has a �nite discontinuity at x=0 . Speci�cally, we have
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Continuity of the velocity uW+ uL at x = 0 yields 4 J = [uLN
2

+ uLN
3

+ uLN
4

]x=0 . The wave

component ~uW may be expressed in the form ~uW = ~uW
�

+ ~uWL where the component ~uW
�

is

de�ned by (2) with signx in (2a) replaced by a function

� � �(
�x

F 2
) of the type erf(

p
�

2

�x

F 2
) tanh(

�x

F 2
)

xp
x2+ (F 2=�)2

(6a)

Here, � is an arbitrary positive real number. Note that we have

� � �x=F 2 = (� r0=F 2 )x=r0 as x! 0 (6b)

The component ~uWL is given by8><
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The component ~uWL represents a local ow, which can be grouped with ~uL . Thus, the ow

representation (1) becomes ~u = ~uW
�
+ ~uS+ ( ~uL+ ~uWL ) . In the limit x! 0 , we have vWL ! 0 ,

wWL ! 0 , and � F 4 uWL � (� � signx )J � (� � signx ) (uLN
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in (2a) and (5a) may be replaced by a function � of the type (6) if � is su�ciently large. This

substitution is used hereafter.

SIMPLE ANALYTICAL APPROXIMATION TO THE LOCAL FLOW

The far�eld and near�eld representations (4) and (5) yield
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A simple function Q that satis�es these two limiting conditions is Q = ( r0�F 2 )=( r0+F 2 ) .

Thus, the local ow ~uL may be approximated as ~uL � ~uLA with ~uLA given by
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This approximation to the local ow ~uL is asymptotically equivalent to the �rst (dominant)

terms in the far�eld and near�eld approximations (4) and (5) , and the relative error associated

with the approximation ~uA is O(F 2=r0) in the far�eld and O(r0=F 2) in the near�eld.

The second term in the approximation ~uLA is O(F 2=r0) in the near�eld, like the second term
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de�ned by (5b) in the near�eld approximation (5a) . The modi�ed approximation given by
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is asymptotically equivalent to the �rst term in the far�eld approximation (4) and the �rst two

terms in the near�eld approximation (5) . In fact, (7) yields
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Thus, the relative error associated with the approximation (7) is O(F 2=r0) in the far�eld and

O(r0=F 2)2 in the near�eld, as follows from (6b) , (5a) and (5b) .

For purposes of numerical evaluation, the approximation (7) can be expressed in the form
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Gauss integration rules can be used to integrate ~uLA over a panel except if r0 is of the order of

the panel size. In this case, ~uLA can be expressed as
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where Y and Z stand for mean values of Y and Z over the panel, and ~u� is given by8><
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with � = r0=F 2 . The �rst two terms on the right of (9b) are singular as r0! 0 but can be

integrated analytically. The term ~u� is �nite as r
0! 0 and Gauss integration can be used. Thus,

the component ~uLA can be integrated over a panel in a simple and accurate manner.

CONCLUSION

The analytical approximation ~uLA given by (9) makes it possible to evaluate the ow due

to a singularity distribution in a simple and highly e�cient manner. Practical applications to

the slender-ship source distribution de�ned in Noblesse (1983) show that the approximation (9)

is su�cient for many purposes. The approximation (7) also provides a useful starting point to

develop accurate approximations to the local ow ~uL by expressing ~uL in the form

~uL = ~uLA + ~uLR

The remainder ~uLR = ~uL � ~uLA is O(1) as r0! 0 and O(1=r0)3 as r0!1 . This remainder

can be evaluated using table interpolation as in Ponizy (1994) , or an analytical approximation

based on a composite of the far�eld and near�eld approximations (8) , (4) and (5) .
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