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The wave-induced loads on a very large floating structure can be reduced by using an air
cushion to provide part of the static support. This idea has been advanced by Pinkster et
al (1997, 1998), with computations and experimental measurements of the motions in waves
and the air-cushion pressure. They consider a long rectangular barge with side walls and ends
enclosing the air cushion. Further computations have been performed by Lee & Newman (1999)
using a more complete description of the acoustic disturbance, with particular attention to the
resonant modes of the air cushion which are analogous to the ‘cobblestone effect’ suffered by
air-cushion vehicles (Ulstein & Faltinsen, 1996).

Here we consider a simpler two-dimensional diffraction problem, which provides qualitative
insight into the coupling between the acoustic and water waves. In the plane (x, y), water
occupies the semi-infinite domain −∞ < x < ∞, −∞ < y < 0. Air is enclosed within a
chamber bounded by vertical walls at x = ±a, a horizontal lid at y = b, and by the free surface
−a < x < a, y = 0, as shown in Figure 1. The walls and lid are fixed. Plane waves of amplitude
A, frequency ω and wavenumber k = ω2/g are incident from x = −∞. The motions of the
water and air are assumed sufficiently small to justify a linearized analysis.

With the time-dependence represented by the factor eiωt, the velocities of the air and water
are equal to the gradients of the complex potentials Φ(x, y) and φ(x, y). (Upper/lower case
symbols or the subscripts a/w are used where appropriate to distinguish the air/water domains,
respectively.) The governing equations are the Helmholtz and Laplace equations

∇2Φ +K2Φ = 0, ∇2φ = 0, (1)

Figure 1: Sketch showing the air chamber and incident wave.



where K = ω/c is the acoustic wavenumber and c is the sound velocity. The corresponding
pressures are given by the linearized Bernoulli equation:

P (x, y) = − iρaωΦ(x, y), p(x, y) = − iρwωφ(x, y)− ρwgy, (2)

where ρ is the density. The aerostatic pressure −ρagy is neglected on the assumption that
c >> g/ω.

Zero normal velocity is prescribed on the ends and lid of the chamber. On the air-water
interface the kinematic and dynamic conditions are combined in the usual manner to give the
linear free-surface condition

ρw(ω
2φ− gφy) = ρaω

2Φ. (3)

The boundary-value problem for φ is completed by imposing the conventional conditions, in-
cluding the homogeneous form of (3) on the the exterior free surface, the requirement that φ
vanishes as y → −∞, and an appropriate radiation condition in the far field.

The potential in the air chamber can be expanded in the form

Φ = iωA
∞∑

m=0

ξmΦm(x, y), (4)

where

Φm(x, y) = fm(x)
cosh vm(b− y)
vm sinh vmb

(5)

and
fm(x) = cos (um(x− a)) . (6)

Here
um =

mπ

2a
. (7)

The normalizing factors are chosen such that Φmy(x, 0) = fm(x). The elevation of the interface
is

η(x) = A
∞∑

m=0

ξmfm(x). (8)

The eigenfunctions Φm(x, y) satisfy homogeneous Neumann conditions on the ends and top of
the chamber. The coefficients vm follow from the Helmholtz equation:

v2
m = u2

m −K2. (9)

These coefficients are either real or imaginary, and the eigenfunctions Φm are real.
The potential in the water can be derived by superposition of the incident-wave potential

φI =
igA

ω
exp(ky − ikx) (10)

with the solution for an oscillatory pressure imposed on the free surface (Wehausen & Laitone,
1960, equation 21.17). After adapting to the present notation it follows that

φ = φI − iω

πρwg

∫ a

−a
P (ξ, 0)dξ

∫ ∞

0
cosκ(x− ξ) eκy dκ

κ− k . (11)



In the integral with respect to κ the contour of integration passes below the pole κ = k, in
accordance with the radiation condition. After substituting (2) and (4-5),

φ = φI + iωA
∞∑

m=0

ξmφm, (12)

where

φm = − kρa

πρwvm tanh vmb

∫ a

−a
fm(ξ)dξ

∫ ∞

0
cosκ(x− ξ) eκy dκ

κ− k . (13)

After imposing the kinematic boundary condition φy = iωη, multiplying by fn(x)/a, and
integrating over (−a, a), a linear system of equations is derived for the unknown coefficients ξm
in the form ∞∑

m=0

ξmCmn = Dn, (14)

where

Cmn =
1

a

∫ a

−a
fn(x)

[
fm(x)− kρa

πρwvm tanh vmb

∫ a

−a
fm(ξ)dξ

∫ ∞

0
cosκ(x− ξ) κdκ

κ− k
]
dx (15)

and

Dn =
1

a

∫ a

−a
fn(x) e

− ikxdx = − 2 inka

(u2
n − k2)a2

sin
(
ka +

nπ

2

)
. (16)

The integrals in (15) with respect to x and ξ are elementary, and the remaining integral with
respect to κ can be evaluated in terms of sine and cosine integrals.

The simplest physical parameters to consider are the vertical exciting force and pitch mo-
ment, due to the acoustic pressure P acting on the ends and lid of the air chamber. Neglecting
the contribution to the pitch moment from the ends, the force and moment are given by(

X3

X5

)
=
∫ a

−a

(
1

−x
)
P (x, 0)dx. (17)

After normalizing by the long-wavelength (hydrostatic) limits of the force and moment for a
flat plate of the same width, it follows that

X3

2ρwgaA
=

ρakξ0
ρwv0 sinh v0b

(18)

and
X5

2
3
ρwgka3A

= − 12ρa

π2ρw

∞∑
n=1

(n odd)

ξn
n2vn sinh vnb

. (19)

For asymptotically large wave periods the normalized heave force tends to a value less than
the usual hydrostatic limit of 1.0, due to the compressibility of the air. The pitch moment tends
to zero more quickly than the corresponding hydrostatic moment for a conventional floating
body, due to equalization of the pressure throughout the chamber when the period is very large.

Preliminary computations indicate a very large pitch exciting moment in relatively short
waves, at the resonant frequency of the first anti-symmetric acoustic mode (Ka = π/2). The
maximum heave force occurs in longer waves. More complete computations of the heave force,
pitch moment, and modal amplitudes ξn will be presented at the Workshop.



REFERENCES

Lee, C.-H. & Newman, J. N. 1999. ‘Wave effects on large floating structures with air cushions,’
Proc. 3rd Intl. Workshop on Very Large Floating Structures, Honolulu, pp. 139-148

Pinkster, J. A., 1997. ‘The effect of air cushions under floating offshore structures,’ Proc. 8th
Intl. Conference on the Behaviour of Offshore Structures, Delft, The Netherlands, Vol 2, pp.
143-158.

Pinkster, J. A., Fauzi, A., Inoue, Y. & Tabeta, S., 1998. ‘The behaviour of large air cushion
supported structures in waves,’ Proceedings, Proc. 2nd Intl. Conf. on Hydroelasticity in
Marine Technology, Fukuoka, Japan, pp. 497-505.

Ulstein, T., & Faltinsen, O. M., 1996. ‘Cobblestone effect on surface effect ships,’ Schiffstechnik
/ Ship Technology Research Vol. 43, pp. 78-90.

Wehausen, J. V. & Laitone, E. V., 1960. ‘Surface waves,’ Encyclopedia of Physics Vol. 9, pp.
446-778. Springer-Verlag.


