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1. Introduction

The problem of body's oscillation in water confound in a channel is often considered in

the framework of the shallow water theory. However there are cases when trapped modes

exist if the linear �nite-depth solution applies and do not exist in the model by the shallow

water theory. Trapped modes represent a localized oscillation of �nite energy which does

not propagate away to in�nity.

In the paper [1] the existence of trapped modes travelling along the plate placed on the

bottom of the channel was established. This problem was reduced to the two-dimensional

boundary value problem, and its continuous spectrum is above a non-zero cut-o� frequency.

It was shown that at least one trapped mode exists occurring at frequency which is less then

the cut-o� value. The same result was obtained for shallow water. The case when frequency

is above the cut-o� was not discussed.

If there is no cut-o� value in the problem, the model of shallow water fails to prove the

existence of trapped modes. For example Zilman & Miloh [2] showed that oscillation of a

buoyant circular plate in shallow water leads to formation only outgoing surface waves. On

the other hand, for deep water the same velocity potential de�ned with the help of the Green

function [3] gives both standing and outgoing waves, and the evidence of the trapped modes

existence can be obtained numerically.

In the note we consider a circular die on the bottom of a channel. The simple geometry

of the die allows us to �nd the analytic solution of the problem. The cut-o� frequency of the

boundary-value problem is zero and there exist only progressive waves in shallow water. The

purpose of this work is to establish the existence of trapped modes occurring at frequencies

which are point eigenvalues of the problem embedded in the continuous spectrum.

2. Formulation

We consider a three-dimensional channel of constant depth h occupied by an inviscid and

incompressible uid. The moving part of the bottom is modelled by a circular die of radius

a. Cartesian coordinates are chosen so that the origin is in the position of the center of

the die at rest, y-axis points vertically upwards and (x1; x2) are in plane of the unperturbed

bottom.

It is assumed that the motion is simple harmonic in the time and has the radian frequency

!. The vertical displacement of the die can be written as Ref�0e
�i!tg where �0 is the

amplitude of die oscillations. The velocity potential which describes the uid motion is

given by Ref'(x1; x2; y)e
�i!tg, where ' satis�es Laplace's equation

r2' = 0; in the uid; (1)



and the boundary conditions
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' = 0 on y = h; (2)
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= �i!�0 on jxj < a; y = 0; (3)

@'
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= 0 on jxj > a; y = 0; (4)

where g is the acceleration due to gravity and jxj = (x21 + x22)
1=2. If trapped modes are

sought, then the radiation condition is replaced by

'! 0 as jxj ! 1: (5)

The displacement of the die �0 is determined by the equation

(C �M!2)�0 = �
i�!

�a2

Z
Sa

'dx1dx2; y = 0; (6)

where � is the uid density, M is the die mass per unit area, C is the elastic foundation

rigidity, C = C � �g, Sa = fjxj < a; y = 0g is the wetted surface of the die.

3. The velocity potential and trapped frequencies

It is convenient to use cylindrical coordinates (r; �; y) de�ned by

x1 = r cos �; x2 = r sin �; r > 0:

A trapped mode solution of the problem (1){(6) can be constructed with the help of the ring

Green function which gives the potential of a ring source of radius % in the bottom of the

channel. The representation of the ring Green function can be found in [4] and [5]. Then

the velocity potential has the form

'(r; y) = 4�i�0!
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where J0; I0; K0; H
(1)
0 denote the standard Bessel, modi�ed Bessel and Hankel functions of

zero order,

r< = minfr; %g; r> = maxfr; %g

and

C0 =
2�(k20 � �2)

h(k20 � �2) + �
cosh k0y; Cm =

(k2
m
+ �2)

h(k2
m
+ �2)� �

cos kmy;

where

k0; �ik1; �ik2; :::; �ikn; :::

is a sequence of roots of the dispersion relation

k tanh kh = �; (8)



the parameter � = !2=g.

Hence, (7) gives an expansion of the velocity potential in terms of the cylindrical waves.

The behaviour of these waves is clear from the asymptotic representation of Bessel functions.

At large distance the contribution by the �rst term in (7) is an outgoing progressive wave as

a result of expansion of the Hankel function. The waves described by the second term in (7)

behave like standing waves which decay as r !1. The outgoing wave in r > a is annulled

by taking k0a to satisfy

J1(k0a) = 0;

that is k0a = jn (n = 1; 2; :::), where jn are zeros of the Bessel function J1. Thus, from (8)

we �nd the sequence of frequencies
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jng

a
tanh

 
jnh

a

!!1=2

; n = 1; 2; ::: (9)

Such that for ! = !n outgoing wave becomes zero in r > a and radiation condition (5) is

ful�lled.

Now the aim is to �nd the set of the parameters fa; h;M;Cg for which the trapped

frequency is fundamental one. Then (7) gives the trapped modes solution for ! = !n.

Substituting the formula (7) for the velocity potential into the integral in (6) we get for

! = !n

C
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�M 0!0
n

2
= R0

g
+R0

in
; n = 1; 2; :::: (10)

where we use the nondimensional parameters C
0

= C=�g, M 0 = M=�a, R0 = R=�g, !0
n
=

jn tanh jn�, � = h=a. The terms R0
g
and R0

in
in (10) are de�ned as follows

R0
g
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4 tanh jn�

2jn� + sinh 2jn�
; n = 1; 2; :::; (11)

R0
in
= 4jn tanh jn�
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and �(m � 1
2
)=h < kmn < �m=h; (n = 1; 2; :::) . The expression of the right-hand side

of (10) R0 = R0
g
+ R0

in
is a function of � and represents the dynamical reaction of the

uid on die oscillations. The �rst term R0
g
< 0 is a result of the gravity action caused by

the standing waves and R0
g
= �1 + O(�) as � ! 0, and decays as � ! 1. The second

term R0
in

> 0 is induced by inertial force of the uid and R0
in

= O(�2) as � ! 0 and

R0
in
= jnM

0

�n
(n = 1; 2; :::) as � !1, whereM 0

�n
is the sum of the series (12). The constant

M 0

�n
(n = 1; 2; :::) is the added mass of the die oscillating with n-th trapped frequency. Thus

R0(�) is a continuous function with alternating sings and R0 tends to �1 as � ! 0 and R0

equals to jnM
0

�n
; (n = 1; 2; :::) as �!1.

Using (10) to evaluate C
0

and taking into account the behaviour of R0(�) we can formulate

the following statement.

For any n, � > 0, and M 0 > 0 a �nite solution C 0 > 0 of the equation (10) can be found

where !0
n
(9) is the fundamental frequency.

Thus there exists the sequence !n ! 1 (n = 1; 2; :::) given by (9), whose elements are

point eigenvalues of the problem (1){(6) embedded in its continuous spectrum. The trapped

mode solutions '(!n) are de�ned by (7).



4. Conclusion

The trapped modes solutions embedded in the continuous spectrum have been con-

structed for the circular die oscillating on the bottom of deep water. In the case when

the geometry of the die is arbitrary the solution of the boundary value problem is a subject

of numerical investigation. We can apply the same methods in order to prove the existence

of trapped modes. The condition of the outgoing wave destruction has the form

Z
S

H
(1)
0 (kjx� �j)dS = 0 as jxj ! 1

where x = (x1; x2), � = (�1; �2) and S is the die wetted surface. De�ning k from the last

equation we �nd a spectrum of trapped frequencies, which can be written as

!tr = (kg tanh kh)1=2

For the existence of trapped modes it is necessary to �nd parameters of the problem resolving

the frequency equation
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tr

Here G(x; y; �) is the Green function given in [3] which describes the velocity potential of a

source placed at a point (�; 0).
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