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1 Introduction

The plane unsteady problem of water impact is considered with focusing the attention on the 
ow near the

intersection point between a liquid free surface and a rigid contour. The correct description of the 
ow �eld

in this region is highly expensive in spite of its small in
uence on the total hydrodynamic load. On the other

hand, in numerical study of the slamming problem accurate treatment of jet 
ow can improve numerical

algorithms in use and increase accuracy of the numerical solutions.

We stay within the non-linear potential theory of ideal incompressible liquid 
ow generated by a 
oating

wedge impact. The liquid initially occupies a lower half-plane (y < 0) and is at rest. Initial draft of the

wedge is h0 and the deadrise angle of the wedge is 
. The parts of the liquid boundary y = 0, x < �xc and
x > xc, where xc = h0 cot 
, correspond to the initial position of the liquid free surface. At some instant of

time which is taken as the initial one, the wedge begins to move down at a constant velocity V . We shall

determine the liquid 
ow, position of the free surface and the pressure distribution at each instant of time

t > 0.

The numerical method proposed by Longuet-Higgins and Cokelet for free-surface 
ows with non-linear

boundary conditions is employed. The free surface position is updated at each time step with the help of

numerical solution of the corresponding mixed boundary-value problem. This solution may be singular at

the intersection points, where the type of the boundary condition changes, and which are usually corner

points of the 
ow domain. The singularities an the intersection points in
uence the numerical solution at

all subsequent time steps, and thus can have disastrous cumulative e�ects.

In order to avoid the di�culties with the time-stepping numerical method, it is suggested to distinguish

small vicinities of the intersection points at each time step and to build there approximate analytical solutions

matching them with the numerical solution in the main 
ow region (section 2). The numerical solution is

obtained by the boundary-element method. Initial conditions for the numerical solution are obtained by the

method of matched asymptotic expansions in section 3.

Several models have been suggested in the past, which are based on the idea to cut o� the jet and to

replace it with a suitable boundary condition to be applied on the jet cut. Zhao & Faltinsen [1] suggested

to cut the jet there, where the angle between the tangential to the free surface and that to the body contour

drops below a small given value. The 
ow in the jet region is not considered. The cut is orthogonal to the

body contour and a linear variation of the velocity potential along the cut is assumed. The normal derivative

of the velocity potential obtained by solving the discretized boundary integral equation is used to move the

cut. A slightly di�erent approach has been suggested by Fontaine & Cointe [2]. Within this approach it is

suggested to cut o� the jet there, where the jet thickness becomes smaller than a given limiting value. The

normal velocity on the jet cut is assumed to be equal to the tangential velocity on the body contour. Both

these models have been found to work well and in good agreement with similarity solutions [3]. It is expected

that both models are approximately equivalent to each other for small deadrise angle, which follows from

the asymptotic analysis of the wedge-entry problem. On the other hand, both models are not easy to justify

for moderate and large deadrise angles, where the "cut-o�" technique is also attractive to use. It should be

noted that the reliabilities of these models are highly dependent on the limiting values for the jet angle or

the jet thickness. The values cannot be too small and, generally speaking, cannot be arbitrary. The best

choice of these values is up to the experience of a researcher.

The aim of this study is to develop a more physical way to decompose the 
ow region without forcing

neither the jet angle or the jet thickness. In this paper the velocity potential in the jet region is expressed

as a suitable expansion around the intersection point. The coe�cients of the expansion are evaluated from

the numerical solution of the boundary-value problem, enforcing a matching with the outer solution.

2 Numerical simulation of the water entry

The 
ow about a symmetric wedge plunging the water surface is numerically studied in the frame of the

potential 
ow assumption. A boundary integral formulation is employed to solve the Laplace's equation

in terms of the velocity potential. On the body contour the normal derivative of the velocity potential is



assigned while on the free surface the velocity potential is updated according to the unsteady Bernoulli's

equation.

The main issue concerns the treatment of the intersection between the free surface and the body contour.

In order to avoid an excessive computational e�ort, the shape of the 
ow region close to the intersection

point is approximated by a wedge and the velocity potential is expressed there as follows:
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Here � is the angle between the body contour and the free surface at the intersection point and r; � are polar

coordinates with origin at this point (Fig. 1).
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Fig.1 Scketch of the jet region

The �rst term in equation (1) is to satisfy the boundary condition on the body contour, the second term

to satisfy the boundary condition on the free surface side and the last term represents the eigen solutions

of the Laplace's equation in the liquid-wedge region. This term is of major importance for � > �=2 leading

in this case to a singular velocity �eld at the intersection. For small values of � the eigen-solution part

can be neglected in a low-order approximation. The coe�cients in expansion (1) are computed directly

by solving the boundary-value problem and enforcing the matching between the 'inner' expansion (1) and

the 'outer' numerical solution along the matching line. The coe�cients ck are determined by introducing

M +1 panels on the matching curve while the coe�cients ak can be recovered either by extrapolation from

the computational domain, where the dynamic boundary condition is satis�ed, or by introducing additional

N + 1 panels on the matching curve.

In the case of constant entry velocity, the behaviour of the angle � as function of the wedge deadrise

angle was recovered. Besides to the case of constant entry velocity, also the free fall impact is analysed. In

this case the unsteady contribution to the pressure �eld on the body contour is computed by solving another

boundary-value problem in terms of the time derivative of the velocity potential. The hydrodynamic load

is then used as a forcing term for the dynamic equation of the body motion that is integrated in time to

provide the actual entry velocity.

3 Small time analysis

Besides the treatment of the jet region, one problem that causes troubles is the initial transient. Numerical

approaches usually start from the undisturbed free surface con�guration with the body partially submerged.

In this condition a singular velocity �eld occurs at the intersection and the numerical treatment of this

singularity is not straightforward. Due to the velocity singularity at the intersection, the solution that can

be obtained up to the time at which the jet develops is not reliable. This unphysical behaviour of the initial

transient may a�ect the solution in the case of free fall impact when a correct estimate of the hydrodynamic

load is needed to accurately compute the dynamics of the impacting body [4]. For this reason a small-time

analysis of the 
ow when the body impulsively starts to move down is done. It was shown that, at the

leading order as t ! 0, the 
ow close to the contact point is self-similar. The solution of this problem is

helpful to derive the initial conditions for the following numerical simulation.

The 'outer' solution of the 
oating wedge impact problem, which is valid outside the intersection point

vicinities, was obtained by Sedov [5] in the form
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where  (x; y) is the stream function, z = x + iy, l = h0= sin 
, � is the complex variable connected to z by

the formula
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Asymptotic behaviour of the complex potential near the right-hand side intersection point z = xc(0) =

h0 cot 
 is
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As stated above, a singularity of the velocity �eld at the contact point occurs as it can be recognized

from the leading term of the Sedov's solution

� ' Ar
�0 cos�0� as r ! 0 ; (2)

where �0 = �=(2�) with � = � � 
. The constant A can be readily evaluated from the 'outer' Sedov's

solution. Equation (2) can also be recovered from expansion (1).

To perform the small-time analysis, local stretched coordinates �; � and the 'inner' velocity potential

'(�; �; t) are introduced as follows

x = xc + a(t)� ; y = a(t)� ; � = a
�(t)'(�; �; t)

with a(t)! 0 as t! 0. Using the methods of asymptotic analysis and the matching conditions, we obtain

a(t) = [(2� �0)t]
1

2��0 ; � = �0:

Matching the behaviour of the velocity potential in the 'outer' region expressed by equation (2) with that

in the 'inner' region, gives the condition at in�nity for the 'inner' velocity potential

'(�; �; t) ' A%
�0 cos�0� as �!1 ; (3)

with � =
p
�2 + �2.

In terms of the new stretched variables the dynamic and kinematic boundary conditions on the free

surface take the forms
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where the equation �(�; �; t) = 0 describes the free surface shape. Since 2 � �0 > 0, the shape of the free

surface and the velocity potential do not depend on time in the leading order as t ! 0, which means that

the 
ow close to the contact point is approximately self-similar.

In terms of the stretched velocity potential the boundary condition on the body surface is

'� = '� tan 
 � V a
1��0

and, as t! 0, the last term can be neglected leading to the following boundary condition on the body:

@'

@n
= 0 : (6)

Equations (4) and (5) indicate that it is convenient to introduce new unknown function S(�; �) instead

of the velocity potential

S(�; �) = '(�; �; t) �
1

2
(�2 + �

2);

with the help of which the 'inner' problem is reduced to the boundary-value problem for the Poisson's

equation

�S = �2 in the 
ow region;

@S

@n
= 0 on the boundary of the 
ow region;

�
@S

@�

�2
+ 2�0S = (1� �0)�

2 on the free surface;
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where @S=@� is the tangential derivative of the function S(�; �) along the free surface (Fig. 2). It is important

to note that the dynamic condition in this formulation can be exactly integrated leading to the direct relation

between the value of the function S on the free surface and the free surface shape. The problem for the

Poisson's equation is solved by iterations dealing with the corresponding mixed boundary-value problems at

each step. The technique outlined in section 2 can be employed to improve the convergence.
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Fig.2 Scketch of the inner region for the small time analysis
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