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This study concerns solitary waves in a strati�ed uid and is motivated by possible e�ects of

sub-surface waves in a layered ocean on compliant o�shore units. Such o�shore units may be oating

platforms or ships at the sea surface with connecting risers and cables to wells and equipment at

the sea oor. The concern is the possible loads and induced vibrations of the risers and cables

caused by sub-surface waves.

The ocean often has a shallow upper layer with a strati�cation that is relatively close to a

linear function and a deep lower layer with constant density. This motivates for developing a

two-layer model where the Brunt-V�ais�al�a frequency is constant in the upper layer and zero in the

lower. The basic equations of the fully nonlinear model are derived along the lines of previous

studies, most notably Yih (1960) and Turkington et al. (1991). Coordinates O�xy are introduced,

with the x-axis horizontal and the y-axis vertical, and with unit vectors i and j accordingly. We

consider motion in two dimensions where waves of permanent form are propagating with speed c

horizontally in the uid. Viewing the problem in a frame of reference which follows the waves, the

motion becomes steady, with a horizontal current with speed c along the negative x-axis in the

far-�eld. The undisturbed uid has a vertical density pro�le

�(y) =

(
�0 ��� y =h2; for 0 < y < h2;

�0; for � h1 < y < 0;
(1)

We assume that the uid is incompressible and inviscid. The former means that r � v = 0 where

v = (u; v) denotes the uid velocity. Conservation of mass, r � (�v) = 0, then gives that v �

r� = 0. Following the procedure of Yih (1960) we introduce pseudo velocities u0 = (�=�0)
1=2u,

v0 = (�=�0)
1=2v. Furthermore we introduce a pseudo stream function 	0 such that v0 = r	0

� k

where k = i � j. It follows that � = �(	0). From the equations of motion the following relation

may be derived

�0r
2	0 + gy

d�

d	0
=
dH(	0)

d	0
= h(	0); (2)

where �r2	0 determines the pseudo vorticity and H = p + 1

2
�(u2 + v2) + �gy is the Bernoulli

constant being conserved along a streamline determined by 	0 = constant. Furthermore, p denotes

pressure and g the acceleration due to gravity. dH=d	0 is determined in the far-�eld, giving

dH

d	0
=
�dp
dy

+ �g
� dy
d	0

+
c2

2

d�

d	0
+ gy

d�

d	0
; (3)

The vertical component of the equation of motion becomes in the far-�eld py+�g = 0, which means

that the �rst term on the right of (3) is zero. The pseudo stream function is then decomposed by

	0 = 	0

1
+  0, where 	0

1
satis�es

d	0

1

dy
= �c

�
�

�0

�
1=2

(4)

giving

r
2	0

1
=

c2

2�0

d�

d	0
: (5)

Since d�=d	0 is constant along each streamline, (2) becomes

�0r
2 0 + g(y � y1)

d�

d	0
= 0; (6)
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where y and y1 are vertical coordinates on the same streamline, with y1 in the far-�eld.

>From now on we apply the Boussinesq approximation, i.e. exploit that ��=� is small. Inte-

grating (4) we �nd 	0

1
= �cy[1 +O(��=�)], giving y � y1 =  0=c. Furthermore we have

g

�0

d�

d	0
=

g

�0

d�

dy

dy

d	0
'

N2

c
[1 +O(��=�)]; (7)

where N2 = �(g=�0)(d�=dy) determines the Brunt-V�ais�al�a frequency. Within the Boussinesq

approximation we may also replace the pseudo stream function by the stream function 	 such that

v = r	� k. Correspondingly, 	0

1
and  0 are replaced by 	1 and  , respectively. Let  =  2 in

the upper layer and  =  1 in the lower. Then  2 satis�es the Helmholtz equation in the upper

layer, i.e.

r
2 2 +

N2

c2
 2 = 0 : (8)

 1 satis�es the Laplace equation in the lower layer, i.e.

r
2 1 = 0 : (9)

The upper boundary of the upper layer is a free surface. With ��=� small this boundary may be

approximated by a horizontal rigid lid. We assume that the bottom of the lower layer is horizontal

at y = �h1. Thus,  2 = 0 at y = h2,  1 = 0 at y = �h1. The two layers are separated by the

streamline with vertical coordinate � where � ! 0 for x! �1. The kinematic boundary condition

requires that the uid velocity is continuous at the boundary between the layers, i.e. that

r( 1 � cy) = r( 2 � cy) at y = �: (10)

The formulation is fully nonlinear, where the stream functions  1;2, the stream line � and the wave

speed c shall be determined.

We solve the nonlinear problem (8){(10) by means of integral equations and introduce two

Green functions G1 and G2. The �rst Green function is a pole at (x; y) = (x0; y0) and satis�es the

Laplace equation (9), i.e.

G1(x; y; x
0; y0) = ln

r

r1
: (11)

The second Green function is a pole at (x; y) = (x0; y0) and satis�es the Helmholtz equation (8),

i.e.

G2(x; y; x
0; y0) =

�

2
[Y0(Kr)� Y0(Kr2)] ; (12)

where Y0 denotes the Bessel function of second kind of order zero and K = N=c. Furthermore,

r = [(x� x0)2 + (y � y0)2]1=2; r1;2 = [(x� x0)2 + (y + y0 � 2h1;2)
2]1=2: (13)

The stream functions are determined by

 1;2 =

Z
I
�1;2(s

0)G1;2(x; y; x
0(s0); y0(s0))ds0 ; (14)

where �1(s) and �2(s) denote yet unknown distributions, I denotes the contour y = � and s

arclength.

Choosing h2 as length scale and the linear long wave speed c0 as velocity scale (and h2=c0 as

time scale) we determine Nh2=c0 from a linearized set of equations. Then the nondimensional

quantities Kh2, �1=c0, �2=c0, �=h2 and c=c0 depend on the parameters h1=h2 and �max=h2, and

not on ��=�. Thus, within the Boussinesq approximation, the actual value of ��=� enters only in

the problem through c0. Velocity pro�les are visualized in �gure 1.

The investigation combines theory and experiments. The latter are performed in a wave tank

with a stable two-layer uid with a shallow uid of linear strati�cation above or below a deeper
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uid of homogeneous density. We generate solitary waves of mode one which propagate along the

wave tank. The amplitude of the waves, de�ned by the maximal excursion of the strati�ed layer, is

in a rather large range. Particle tracking velocimetry (PTV) and particle image velocimetry (PIV)

are employed to make detailed recordings of the induced velocities due to the waves.

Particular focus is paid to the role of the breaking of the waves observed in the experiments.

For the large waves the breaking occurs in a region in the centre of the waves in the thin layer

with linearly strati�ed uid. The breaking serves to limit the uid velocity. The latter is in the

region with breaking found to be of the form v = ci + v0 where ci denotes the wave velocity and

v0 a velocity �eld where jv0j << c. This means that the wave speed provides an upper bound of

the uid velocity induced by the wave, practically speaking. The wave breaking occurs similarly

in the experiments with the inverted two-layer model, when the waves are large. A uid velocity

approximately equal to the wave speed means that the wave transports mass.

The experimental and theoretical velocity �elds exhibit good agreement up to breaking, gener-

ally speaking. Intensive breaking is found to occur for a wave amplitude a less than about 0.8 times

the depth h2 of the linearly strati�ed layer. This is in agreement with the theoretical model which

predicts an induced uid velocity being less than the wave speed when a=h2 < 0:855. For larger

waves the theory does not �t with the experimental observations. We �nd that the experimental

waves broaden when the non-dimensional wave amplitude exceeds 0.8{0.9 (�gure 2). The experi-

ments suggest that the broadening is caused by the wave breaking which limits the magnitude of

the uid velocity. The broadening is not reproduced by the theory. The broadening e�ect found

here is entirely di�erent from the one taking place in a two-uid system with constant densities in

each of the layers.

In the present two-layer model a solitary wave always exhibits an excursion out of the layer

with linear strati�cation.

This work was conducted under the Strategic University Programme `General Analysis of Realistic

Ocean Waves' funded by the Research Council of Norway.
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Figure 1: Velocity pro�les at wave crest. a=h2 = 0:2; 0:4; 0:6; :::; 2:4. h1=h2 = 4:13.
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Figure 2: Nondimensional wave length �=h2 vs. nondimensional velocity umax=c. Small circles and

crossed (experiments) Solid and dashed line (theory).

4


