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1 Introduction

The dynamics of waves along the ocean surface determines the input parameters in wave

analysis of stationary o�shore structures and moving ships, and in the calculation of

induced loads in tension legs and risers. Recent experimental investigations at the Uni-

versity of Oslo have shown that the leading waves in a wave group may introduce special

loads on the structures. This includes in particular high-frequency loads (ringing). The

experimental studies have prompted the present investigation. Questions we have in mind

include why leading waves of a wave train can reach appreciable heights? What are the

induced velocities and accelerations of the waves? Do moderately steep to steep waves

exhibit special features compared with small amplitude waves?

To analyze these questions we derive a very accurate model for a wave train generated

by a pneumatic wavemaker.

2 Mathematical formulations

The classical two-dimensional gravity wave equations for a potential 
ow over a horizontal

bottom are

�xx + �yy = 0 for �h � y � �; (1)

�y = 0 at y = �h; (2)

�y � �t � �x�x = 0 at y = �; (3)ep+ g� + �t +
1

2
�2
x
+ 1

2
�2
y
= 0 at y = �; (4)

where � is the velocity potential, h is the mean depth, g is the acceleration due to gravity,

� is the surface elevation from rest and ep is a forcing pressure at the surface.
To numerically solve the equations, it is convenient to rewrite the system (1){(4) in a

form which involves quantities at the surface only. Using the derivative laws

e�x = f�x + �x
f�y ; e x =

g x + �x
g y ;

e�t = f�t + �t
f�y ;

( being the stream function,  =0 at the bottom, and we denote quantities at the surface

by tildes), and the 
ow conservation law, equations at the surface can be rewritten as:

�t +
e x = 0; (5)

e�t + g� +
1

2

e� 2
x
� e 2

x
+ 2 �x

e�x e x

1 + � 2
x

= �ep: (6)

These two equations give temporal evolutions of � and e�. To complete the system we

need an equation for e . Using the holomorphy of �+i , the equation for e is obtained

from the Cauchy integral formula. An in�nite tank does not exist in the real world and
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it is not convenient for computations. We then consider a tank of a �nite length L, in

which 0 � x � L. Since we shall use a forcing pressure with an even symmetry, the

tank is extended for x < 0 by symmetry. Moreover, it is advantageous to periodise the


uid domain to compute solutions with Fast Fourier Transforms. We therefore consider a

2L-periodic problem. The bottom impermeability is taken into account via a Schartzian

symmetry. Finally, the equation for e is

e (x; t) = 1

2L
PV

Z
L

�L

( e�0 � �0
x
e 0 ) sin x

0
�x

L=�
+ ( e 0 + �0

x
e�0 ) sinh �0

��

L=�

cosh �0
��

L=�
� cos x0

�x

L=�

dx0

�
1

2L

Z
L

�L

( e�0 � �0
x
e 0 ) sin x0

�x

L=�
+ ( e 0 + �0

x
e�0 ) sinh 2h+�0+�

L=�

cosh 2h+�0+�

L=�
� cos x0

�x

L=�

dx0; (7)

where PV is the principal value and e�0 = e�(x0; t), etc. The system (5){(7) is equivalent

to the original one and it involves quantities at the surface only. Moreover, it is purely

Eulerian.

To generate from rest a wave of angular frequency �, we choose a localized pneumatic

wavemaker of the form

ep = gA sin(�t)H(t) exp(�x2
.
2�2 ); (8)

where H is the Heaviside function, and parameters A and � are tuned to obtain a wave-

maker of maximum e�ciency (Wehausen & Laitone 1960).

The analytic solution of the linearized equations is (for L=1)

� =
A��t
p
2�

Z
1

�1

! e�
k
2
�
2

2

! + �

"
sinc

(! � �)t

2
cos

(! + �)t

2
� sinc �t

#
eikx dk; (9)

e� = �gA��tp
2�

Z
1

�1

! e�
k
2
�
2

2

! + �
sinc

(! � �)t
2

sin
(! + �)t

2
eikx dk; (10)

e =
�iA��t
p
2�

Z
1

�1

!3k�1 e�
k
2
�
2

2

! + �
sinc

(! � �)t

2
sin

(! + �)t

2
eikx dk; (11)

with !2=gk tanh kh and i2 = �1. This solution is used in the numerical scheme.

3 Numerical resolution

Our goal was to obtain a highly accurate approximation, even for long time evolution.

The periodic tank is discretized with a constant spatial step. Derivatives are computed

with FFT (pseudo-spectral method). The scheme is hence of in�nite order in space and

very fast.

The Cauchy integral is discretized with the trapezoidal formula, which is of in�nite

order for a periodic regular function. This leads to the resolution of an implicit linear

system. Calculations are achieved with an optimized SSOR method.

The temporal resolution is carried out in Fourier space. The resolution is very sti�

for high frequencies, and thus the time step must be very small. Moreover, the amount

of phase error increases with the Fourier wavenumbers and with the length of the time

interval. The accuracy condition is more demanding than the stability condition. To

avoid this problem, we split equations in linear and nonlinear parts, and we make an
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analytical integration of the linear part (e.g. (9){(11)). Only the nonlinear terms remain.

Fornberg & Whitham (1978) have used this type of transformation to solve the Korteweg

& de Vries equation. The treatment of the linear term is both unconditionally stable and

exact. The stability limit and the accuracy are considerably increased. The evolution of

nonlinear terms are computed with the fourth-order Runge{Kutta{Gill algorithm.

This scheme is very accurate and relatively fast. It is written inMatlab and runs on

a PC.

4 Preliminary results

We have computed transcient short waves in relative deep water. First we can compare

the surface elevations given by the exact numerical solution and the linear solution. In

the quasi-steady part of the wave train, the linear and nonlinear solutions are not very

di�erent (Fig. 1). This means that a high-order analytical theory can predict correctly

the wave �eld. On the other hand, in the transcient leading part, di�erences in amplitudes

and phases are very important. In the far �eld where the elevation is small, linear and

nonlinear solutions are comparable in both amplitudes and phases. This proves that the

signi�cant di�erences in the transcient leading part are not due to numerical inconsis-

tencies. We observe that the �rst signi�cant crest focuses energy. It has an oscillating

motion, increasing and decreasing alternatively with an ampli�cation until breaking. Such

behavior seems to be di�cult to describe with classical high-order theories.

We can also consider the horizontal acceleration at the surface (Fig. 2). The back

side of the leading crest has an important negative acceleration, which is not the case for

the quasi-steady part of the wave train. This phenomenon could have important e�ects

on an obstacle.

Our work is still in progress. Further and more de�nite results will be presented at

the workshop.
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Figure 1: Surface elevations at two di�erent times.

(|) exact, ({ {) linear, for g = 9:8m s�2, h = 0:6m, � = 8 rad s�1.
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Figure 2: Horizontal acceleration at the surface.

(|) acceleration, ({ {) surface elevation, for g = 9:8m s�2, h = 0:6m, � = 8 rad s�1.
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