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The potential flows generated by a source pulsating with constant frequency and advancing at constant
horizontal speed are called ship-motion Green functions as they are involved in the kernel of integral equations
established in the ship-motion problems, and include time-harmonic flows with forward speed and the special
cases of Neumann-Kelvin steady flow (at zero frequency) and time-harmonic flows without forward speed.
Further to an introductory treatise by Chen (1999) in the case of deep water, ship-motion Green functions
in water of finite depth is considered here. Based on the formal decomposition of free-surface effects given
by Noblesse & Chen (1995), the wave component (dominant in the far field) of ship-motion Green functions
expressed as a single integral along the dispersion curves defined in the Fourier plane by the dispersion
relation is analyzed. Especially, the peculiar properties of the wave component near the track of the source
point located close to or at the free surface are studied by an asymptotic analysis.

1 Ship-motion Green functions in water of finite depth

Under the reference system moving with the source at the speed U along the positive z-axis defined by its
(z,y) plane coinciding with the mean free surface and z-axis oriented positively upward, the ship-motion

Green functions G (g”, Zs) representing the velocity potential of the flow created at a point = (&,n,¢) by a
pulsating-advancing source of unit strength located at a point Z3 = (zs, ys, 2s), can be expressed as

G=G"+G"F (1)

where G accounts for free-surface effects and G is defined in terms of simple singularities

oo

4r G° = Z { 1/4/r2 + (C—25 + 2nh)2 + 1//r2 + §+zs+2nh)} (2)

n=—oo

in which r = \/(£—z5)% + (n—ys)? and h = H/L is the adimensional waterdepth with respect to the reference
length L. The simple part G° defined by (2) satisfies G® = 0 at the free surface (( = 0) and 0G*° /3¢ = 0
at the sea bed (¢ = —h). The free-surface part G¥ in (1) is defined by a double integral representing the
Fourier superposition of elementary waves

Aefz (az+Ly)
4r?Gh = lin
G im /dﬁ/da D+ icsign(D}) (3)

with (z,y) = (§—xs,n—ys) and A defined by
A = cosh k(C+h) coshk(zs+h)/ cosh? kh  with k= \/a? + 32 (4)
Furthermore, the dispersion function D in (3) is given by
= (f—Fa)* — ktanh kh (5)

in which f = wy/L/g and F = U/\/gL are respectively called adimensional frequency and Froude number,
as w and U stand respectively for wave encounter frequency and ship’s speed, and L and g for ship’s length
(taken as the reference length) and the acceleration of gravity. The function sign(Dy) is given by

sign(Dy) = sign(0D/0f) = sign(f— Fa) (6)

Following the analysis by Noblesse & Chen (1995), the free-surface part G can be decomposed as G¥' =
G" + GV with G the wave component and GV the nonoscillatory component negligible in the far field.
The wave component is defined by the single Fourier integral along the dispersion curves defined by the
dispersion relation D = 0

ar GW = —i Z ds (21 4 By)e~H@=+6v) A /| VD) (7)



where ) ,_, means summation over all the dispersion curves and ds is the differential element of arc length
of a dispersion curve. The function ¥, =sign(Dy) is associated with the limit ¢ — 40 in (3) and ensures the
satisfaction of the radiation condition, while the sign function X is given in [2]

Yy =sign(zDy +yDg) with (Dg,Ds) = (0D/0a,0D/00) (8)
and used in the following analysis.

2 Dispersion relation and far-field waves
The dispersion function D defined by (5) is associated with the boundary condition on the free surface of
wave diffraction-radiation with forward speed in water of finite depth. The dispersion relation D = 0 can be

written as
(t1—a)? — ctanh(c/F?) =0 with 7=fF and F, =U/\/gH (9)

by using the speed-scaled Fourier variables (a,b,c) = (a, 8,k)F? and H = Lh the waterdepth.

The equation (9) defines several distinct dispersion curves symmetric with respect to the axis # = 0
depending on both the value of 7 and that of Fj,. In deep water (F}, = 0), there exist two or three distinct
dispersion curves at a value of 7 smaller or larger than 1/4. For 7 < 1/4, two open dispersion curves are
located on the left and right half Fourier planes and one closed dispersion curve in between around the
origin, as shown in Fig.1 by solid lines. At 7 = 1/4, the left open dispersion curve is connected to the closed
dispersion curve. For 7 > 1/4, the left open dispersion curve goes on the right half Fourier plane near the
origin while the right open dispersion curve keeps its similar form on the right half Fourier plane.
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Fig.1 Dispersion curves at 7 = 0.2 for various values of Fj,

In water of finite depth (F}, > 0), the dispersion curves change their form even for a constant value of 7
as shown by Fig.1 which depicts the dispersion curves at 7 = 0.2 for different values of Fj, = 0,0.4,0.5,0.6,1
and 2. The left open dispersion curve and the closed dispersion curve are distinct for small values of F}, and
connected to become one open dispersion curve for large values of Fj,. The two open dispersion curves at
large values of F}, become more and more vertical in the region near the axis 8 = 0 and their intersection
points with the axis tend to a =7, i.e. a= f/F. An interesting feature of dispersion curves is that the
variations of the geometrical form associated with the variation of F} at a constant 7 >0 are quite similar
to those associated with the variation of 7 in deep water (Fj, =0).

The analysis by Chen & Noblesse (1997) shows that each dispersion curve is related to a wave system,
and establishes a direct relationship between the geometrical properties of a dispersion curve and important
aspects of the corresponding far-field waves including wavelength, direction of propagation, phase and group
velocities and cusp angles. Applying to the case of finite-depth water, we have similar wave systems as in
deep water: the inner-V waves are associated with the right open dispersion curve for F' >0, the ring waves
associated with the closed dispersion curve and the outer-V waves with the left open dispersion curve for
small values of both 7<1/4 and F}, while the partial ring and fan waves appear and are associated with the
left open dispersion curve at larger values of F}, even at 7 <1/4. Following the analysis in [4], the transverse
and divergent waves associated with the open dispersion curves are respectively corresponding to the part
of dispersion curves between two inflection points (symmetrical with respect to =0) and the part from the
inflection points to infinity. Unlike the case of steady flows (7=0) where the transverse waves disappear for
super-critical flows Fj, > 1, there exist still time-harmonic transverse waves (included in the inner-V wave
system) and partial-ring waves (in partial-ring and fan waves) in the downstream for Fj, > 1.



3 Wave component near the track of a source point

Similar to the analysis in [3] on the wave component of time-harmonic flows in deep water near the track of
the source point close to or at the free surface, the asymptotic expansion of the open dispersion curves at
large wavenumber is developed first. In fact, the dispersion relation (9) is found to be asymptotically

b=-1/2+a—7/a+0(a?) as |a|>oo with a=a-7 (10)

in which the first two terms on the right hand side represent a parabola with the axis a = 7 and the vertex
located at (a,b) = (1,—1/2), and the parameter Fj, disappears as the hyperbolic tangent function in (9)
tends to the unity exponentially at large values of ¢. The open dispersion curves at 7=0.2 are depicted by
Fig.2 which shows that all dispersion curves for different values of F} tend to coincide at large wavenumber.

In (7), the values of ¥; = sign(Dy) are equal to %1 re-
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with
Zyv=—(C+zs)[F?, Zo=(CHzs) [F? +4[F}, Zs=—(C—20) [F? +2/F}, Zys=((~2,)/F? +2/F; (15)
By making use of (10), (12) and (14), the wave component defined by (13) can be expressed as
2rF?GY =GV + GV + G (16)

in which the first two terms are defined by

a= 4 i 4
. a 0 ) a 0o g+ _ g~
Gy = —ie*"X(/ —/ )Y (EF+&)da and Gl :Tye*"X(/ —/ )y m——mda (17)
—00 at n=1 —o at n=1 a
with £&F = exp[—(Z,, £iY)a? —iXa £ iY/2] where @ = a—7, and the remaining term defined by

oy = (| 1— [ o)+ ot/ aa (18)

can be shown to yield a finite and non-oscillatory value near the source’s track, since the integrand is
absolutely integrable. The terms G}¥ and G}V defined by (17) can be further expressed by using the complex
error function given in Abramowitz & Stegun (1967). By considering the asymptotic behavior of the complex
error function obtained in [3], the leading terms of the wave component can be written asymptotically as
Y =0

4 4
Gy =e XD G +0(1) and Gl =7e7"X Y GV +0(1) (19)

n=1 n=1
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in which the notations R,, = v/Z2 + Y2 with Z,, defined by (15) and 6,, = arctan(Y/Z,,) are used.

In summary, the wave component near the track of a pulsating-advancing source is expressed as

with Gl =

) (20)

4 4
21 F2GY =GW +GW  with GW =e X (Z Gov+7y gfg) (21)
in which the pr1nc1pal part GV is defined with the leading terms given by (20) and the remaining part
g R = 27rF2GW Gw is finite with a magnitude of order O(1) and non-oscillatory with respect to Y. The
leading terms gOn and gln are highly-oscillatory as Y — 0 due to the term X?Y/(4R2) in the trigonometric
functions which associates Y with an increasing wavenumber X?/(4R2) for small R,, especially as Ry — 0

(when Y — 0 and Z; — 0). Furthermore, the leading term G} is singular near the track as ¥ — 0 of the
source located at the free surface (Z; =0).

4 Discussions and conclusions

The singular and highly-oscillatory properties of ship-motion Green functions in water of finite depth repre-
sented by GW in (21) are illustrated in Fig.3 for a source point located at the free surface (left part) and for
an immerged source point close to the free surface (right part) at 7 = 0.2 and Fj, = 1 along X = —5. The real
and imaginary parts are depicted respectively by the solid and dashed lines. This result can be considered as
an extension of the study in [3] on deep-water Green functions to the more general case of finite-depth water.
Furthermore, the formulations developed in [1] in deep-water case are useful in developing formulations for
finite-depth Green functions since they possess similar properties.
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Fig.3 Wave component near the track of a source at the free surface (left) and an immerged source (right)

These peculiar properties of ship-motion Green functions indicate that usual panel methods based on a
constant or linear distribution of sources and dipoles may not be reliable since the waterline integral carried
out by numerical quadrature cannot be accurate, due to dramatic cancellations of highly-oscillatory values.
The new results obtained in the present study are critically important in understanding all aspects of free-
surface dispersive flows and very useful in providing a robust and consistent method based on a higher-order
distribution of singularities and analytical integrations of the singular and highly-oscillatory terms such as
studied in [6], to solve 3D ship-motion problems in a fully satisfactory way.
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