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Introduction

The research presented here investigates the interaction of oblique waves with a horizontal cylinder in a
two-layer fluid consisting of a layer of finite thickness bounded above by a free surface and below by a fluid
of greater density and infinite depth. The free surface and the interface between the two fluids provide
two surfaces on which waves can exist. The case of normal incidence was considered previously by Linton
and McIver (1995) who were interested in such interactions following proposals to build submerged floating
tunnels across Norwegian fjords. Such fjords typically consist of a layer of fresh water above a deep expanse
of salt water.

Formulation

Cartesian coordinates are chosen such that the (x, y)-plane coincides with the undisturbed interface between
the two fluids. The z-axis points vertically upwards with z = 0 and z = d corresponding to the undisturbed
interface and free surface respectively. The upper fluid, 0 < z < d , will be referred to as region I and have
density ρI , whilst the lower fluid, z < 0, will be referred to as region II and have density ρII . We also
define ρ = ρI/ρII < 1. Under the usual assumptions of linear water wave theory we can write the velocity
potential as <{φ(x, z)eilye−iωt} where

(∇2 − l2)φ = 0 in the fluid, (1)

φIz = φIIz on z = 0, (2)

ρ(φIz −KφI) = φIIz −KφII on z = 0, (3)

φIz = KφI on z = d, (4)

and K = ω2/g. The dispersion relation is given by

(u−K)(K(σ + e−2ud)− u(1− e−2ud)) = 0, (5)

where σ = (1 + ρ)/(1− ρ). It follows that either u = K or u = k > K where

K(σ + e−2kd) = k(1− e−2kd). (6)

The potential of an incident plane wave of wavenumber K making an angle αinc with the positive x-axis
takes the form

φinc = eiKx cosαinceKz, (7)

from which

l = K sinαinc (8)

and hence we clearly must have l < K. For incident wavenumber k we simply have to replace K with k
in (8) and such waves can exist provided l < k. A general scattering potential has the far-field behaviour
described by

φI ∼A±e±iβxeKz +B±e±ibxg(z) + C±e∓iβxeKz +D±e∓ibxg(z), (9)

φII ∼A±e±iβxeKz +B±e±ibxekz + C±e∓iβxeKz +D±e∓ibxekz, (10)

as x→ ±∞, where β =
√
K2 − l2 and b =

√
k2 − l2. Equations (9) & (10) can be characterised by

φ ∼ {A−, B−, C−, D−;A+, B+, C+, D+}. (11)
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For incident waves of wavenumber K we have β = K cosαinc and b =
√
k2 −K2 sin2 αinc which are real

for all K and 0 < αinc < π/2 since K < k. For the case of an incident wave of wavenumber k we have
β =

√
K2 − k2 sin2 αinc and b = k cosαinc. In this case, given αinc there is a critical value of K for which

β = 0. For values of K less than this critical value β is complex and hence scattered waves of wavenumber
K do not exist.

Using Green’s theorem and (3) we can derive the general identity∫
B

(
φi
∂φj
∂n
− φj

∂φi
∂n

)
ds =JK(A+

i C
+
j − C+

i A
+
j +A−i C

−
j − C−i A−j )

+ Jk(B+
i D

+
j −D+

i B
+
j +B−i D

−
j −D−i B−j ), (12)

where

JK = iβ

[
1
K

+ 2ρ
∫ d

0

e2Kzdz

]
, Jk = ib

[
1
k

+ 2ρ
∫ d

0

[g(z)]2dz

]
, (13)

and B is the set of body boundaries which are assumed for simplicity to all lie in the lower fluid. If we
consider the scattering of waves by a fixed obstacle then in general there are two problems. These are the
scattering of an incident wave of wavenumber K, which we shall refer to as problem 1; and the scattering
of an incident wave of wavenumber k (problem 2). For each of these problems we use R and T to represent
reflection and transmission coefficients corresponding to waves of wavenumber K and r and t are used for
waves of wavenumber k. The problems are thus characterised, in the notation of (11), by

φ1 ∼{R1, r1, 1, 0;T1, t1, 0, 0}, (14)
φ2 ∼{R2, r2, 0, 1;T2, t2, 0, 0}. (15)

Applying (12) to φi, φi, i = 1, 2 , we obtain identities representing energy conservation, namely

|R1|2 + |T1|2 + J(|t1|2 + |r1|2) =1, (16)

|R2|2 + |T2|2 + J(|t2|2 + |r2|2) =J. (17)

where J = Jk/JK .

Circular cylinder in lower fluid layer

Let us consider the case of an infinite cylinder of radius a in the lower fluid centred at z = f < 0 with its
generator parallel to the y-axis. The scattering problem for such a geometry can be solved using multipole
expansions. Multipoles are singular solutions of (1) which satisfy all the boundary conditions of the problem
except that on the cylinder. Symmetric and antisymmetric multipoles can be constructed for this problem
and when expanded about z = f they take the form

φsm =Km(lr) cosmθ +
∞∑
n=0

AsmnIn(lr) cosnθ, (18)

φam =Km(lr) sinmθ +
∞∑
n=1

AamnIn(lr) sinnθ, (19)

where

Asmn =(−1)m+nεn

∫ ∞
0

^ coshmu coshnu e2lf coshuCL(u)du, (20)

Aamn =(−1)m+n2
∫ ∞

0

^ sinhmu sinhnu e2lf coshuCL(u)du. (21)

Here ε0 = 1, εn = 2, n ≥ 1 ,

CL(u) =
(l coshu+K)[(l coshu+Kσ)e−2ld coshu − l coshu+K]

(l coshu−K)h(l coshu)
, (22)

and

h(u) = (u+K)e−2ud − u+Kσ. (23)

2



¿From (6) we have h(k) = 0. The integrands in (20) & (21) have poles at u = γ1 and u = γ2 where

cosh γ1 = K/l, and cosh γ2 = k/l. (24)

To solve the scattering problem we write the velocity potential in terms of the incident wave and the
multipoles as follows

φ = φinc +
∞∑
m=0

am(αmφam + βmφ
s
m), (25)

where α0 = 0 is included for convenience. To find the unknowns αm and βm we apply the body boundary
condition ∂φ/∂r = 0 on r = a. For an incident wave of wavenumber K we obtain

αn +
I ′n(la)
K ′n(la)

∞∑
m=1

αma
m−nAamn =

(−1
a

)n
2i
I ′n(la)
K ′n(la)

eKf sinhnγ, n =1, 2, . . . (26)

βn +
I ′n(la)
K ′n(la)

∞∑
m=0

βma
m−nAsmn =−

(−1
a

)n
εn
I ′n(la)
K ′n(la)

eKf coshnγ, n =0, 1, . . . , (27)

where cosh γ = 1/ sinαinc. Truncation of the systems to N × N systems is required to find solutions.
Convergence is rapid and for the results below a value of N = 4 was used. The reflection and transmission
coefficients are obtained from the far field form of the velocity potential:

T1 =1− πeKfRes[CL : γ1]
∞∑
m=0

(−a)m[αm sinhmγ1 − iβm coshmγ1], (28)

R1 =πeKfRes[CL : γ1]
∞∑
m=0

(−a)m[αm sinhmγ1 + iβm coshmγ1], (29)

t1 =πekfRes[CL : γ2]
∞∑
m=0

(−a)m[−αm sinhmγ2 + iβm coshmγ2], (30)

r1 =πekfRes[CL : γ2]
∞∑
m=0

(−a)m[αm sinhmγ2 + iβm coshmγ2]. (31)

For an incident wave of wavenumber k we have l = k sinαinc and the equations for αm, βm are simply (26),
(27) with K replaced with k. The equations for R2 and r2 are the same as those for R1 and r1, but for the
transmission coefficients we have

T2 =πeKfRes[CL : γ1]
∞∑
m=0

(−a)m[−αm sinhmγ1 + iβm coshmγ1], (32)

t2 =1− πekfRes[CL : γ2]
∞∑
m=0

(−a)m[αm sinhmγ2 − iβm coshmγ2]. (33)

Results and discussion

There are many different features of this problem that could be explored. Here we will concentrate on just
one, the occurrence of zeros of transmission for particular parameter values. Figure 1 shows the reflection
and transmission energies for an incident wave of wavenumber k. The transmission and reflection coefficients
for waves of wavenumber K cut in at Ka ∼ 0.313 which is the critical frequency for this case. For a frequency
of Ka ∼ 0.288 we observe there is zero transmission and full reflection of the waves of wavenumber k. Given
that circular cylinders are known to reflect no energy in a single layer fluid of infinite depth this is perhaps
a surprising result. Figure 2 shows reflection energies for an incident wave of wavenumber k with varying
submergence of the cylinder in the lower layer. The depth of the upper layer, d/a, is fixed and the angle of
incidence, αinc, is set greater than the critical angle so that there are no waves of wavenumber K propagating
on the free surface. We can see from the figure that there is a value of f/a which gives total reflection for a
particular frequency Ka. For cylinders closer to the interface two frequencies at which total reflection occurs
exist. A similar effect is observed when fixing the submergence and varying the depth of the upper fluid.
The existence of zeros of transmission at certain frequencies raises the possibility that trapped modes may
exist in the presence of a pair of circular cylinders submerged in a two layer fluid. This will be the subject
of further research. It is also possible to examine scattering by a cylinder in the upper fluid by exactly the
same method and results for this case will be presented at the workshop.
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Figure 1: Transmission and reflection energies due to a wave of wavenumber k incident on a cylinder in the
lower layer; ρ = 0.5, d/a = 2.0, f/a = −1.1 and αinc = 0.33 .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ka

E3
r

f/a = -1.99
f/a = -1.98
f/a = -1.80
f/a = -1.60

Figure 2: Reflection energies due to a wave of wavenumber k incident on a cylinder in the lower layer;
ρ = 0.5, d/a = 2.0 and αinc = 0.34 .

References

Linton, C.M. & McIver, M. 1995 ‘The interaction of waves with horizontal cylinders in two-layer fluids.’ J.
Fluid Mechanics, Vol. 304 , pp. 213–229.

4


